546
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Modeling Student Cognition in Digital and Nondigital Assessment Environments

, , , &
Pages 275-297 | Published online: 13 Oct 2017
 

ABSTRACT

Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students’ processes as they progress through learning activities. These data have the potential to yield information about student cognition if methods can be developed to identify and aggregate evidence from diverse data sources. This work demonstrates how data from multiple carefully designed activities aligned to a learning progression can be used to support inferences about students’ levels of understanding of the geometric measurement of area. The article demonstrates evidence identification and aggregation of activity stream data from two different digital activities, responses to traditional assessment items, and ratings based on observation of in-person non-digital activity aligned to a common learning progression using a Bayesian Network approach.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 56.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 304.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.