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Abstract
Apoptosis is an evolutionarily young cell‑death strategy evolved to disassemble animal 

cells through the action of the caspase family of proteases and phagocytic clearance. This 
strategy does not work in plants, which instead feature a phylogenetically older autoph-
agic programmed cell death (PCD), as a bona fide type of cellular suicide. Recent work 
has begun to address the mechanistic roles for autophagic and proteolytic components, 
as well as their possible cooperation in plant PCD. A recent study has shown autophago-
somal localization of a key cell‑death proteolytic activity at the early stage of plant PCD. 
Here we focus on the relationship between autophagic and proteoloytic components in 
plant PCD at the cellular and organismal levels.

Programmed cell death (PCD) has evolved as an evolutionarily conserved strategy 
for controlling cell number and tissue differentiation, eliminating temporary organs and 
structures and guiding the development of many diseases and the immune response. There 
are many routes for committing suicide in eukaryotic cells. In animals, the best under-
stood type of PCD is apoptosis, where the cells are taken apart into apoptotic bodies, 
which subsequently are engulfed and digested by the macrophages. Apoptosis does not 
operate in plants owing to the presence of rigid cell walls and a lack of macrophages. 
Instead, dying plant cells degrade themselves from inside by lytic vacuoles.1‑4 The latter 
are formed de novo via the fusion and growth of autophagosomes derived from Golgi,5 
proplastids5,6 or endoplasmic reticulum7‑9 (Fig. 1A) providing an elegant paradigm for 
autophagic PCD.

Which molecules control autophagic PCD and degrade cellular content in plants 
devoid of apoptotic cell‑death machinery still remains an open question. A lack of close 
homologues to caspase family proteases in plant genomes is particularly intriguing, as 
caspases and their numerous substrates constitute the major part of the animal PCD 
degradome.10,11 The degradome of plant PCD remained elusive till a few years ago, when 
a trio of proteases, each being indispensable for the execution of cell death and exhibiting 
distinct substrate specificity and subcellular localization were identified (Fig. 1A). These 
proteases are vacuolar processing enzymes (VPEs), type II metacaspases and VEIDase  
(a protease(s) that cleaves the substrate Val‑Glu‑Ile‑Asp).

VPEs are cysteine‑dependent asparagine/aspartate‑specific proteases from the legumain 
family (C13), with a high preference for the caspase‑1 substrate YVAD (Tyr‑Val‑Ala‑Asp).12 
Active VPEs reside in the lytic vacuoles and could mediate activation of other vacuolar 
enzymes and/or disruption of the tonoplast in the culminating phase of developmental and 
pathogen‑induced PCD.13‑15 Metacaspases form a separate family of cysteine‑dependent 
proteases found in protozoa, plants and fungi and are suggested to be ancestors of animal 
caspases.16 Despite the conservation of caspase‑specific catalytic residues in the metacas-
pases, they do not cleave peptides after aspartate, but display a strict preference for arginine 
or lysine residues at the P1 position in the substrate.17‑19 Type‑II metacaspase, mcII‑Pa 
from Norway spruce is activated in the terminally‑differentiated cells, where it translocates 
from the cytoplasm to nuclei inducing nuclear envelope disassembly and DNA fragmenta-
tion,18 whereas in tomato, expression of type‑II metacaspase is up‑regulated during fungal 
attack.20 In contrast to molecularly characterized VPEs and metacaspases, a protease(s) 
causing VEIDase activity remains elusive. The VEIDase activity resembles the activity of 
mammalian caspase‑6, and has been found as a principal caspase‑like activity during PCD 
in varied eukaryotic systems ranging from yeast cells to Norway spruce embryos.21‑23 
Originally described in Norway spruce embryos, this activity was shown to be localized 
in the cytoplasm of the terminally‑differentiated suspensor cells.22 Although a VEIDase 
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enzyme per se has so far eluded all attempts at identification, we have 
found using biotinylated inhibitor VEID‑acyloximethylketone that 
VEIDase is bound to metacaspase mcII‑Pa in the cell lysates from 
Norway spruce embryos (Smertenko A, Bozhkov P, unpublished) 
providing strong mechanistic support for metacaspase‑dependent 
activation of downstream protease(s) with VEIDase activity.18,19,21 
The establishment of two sets of proteolytic enzymes showing 
contrasting subcellular localization, with one set comprised by VPEs 
and another encompassing nucleo‑cytoplasmic metacaspases and 
VEIDase, suggests a cooperation of two cell degradation pathways 
during execution of autophagic PCD in plants (Fig. 1A). However, 
these data do not link activation of proteases and autophagocytosis 
at the earliest stages of plant PCD when autophagosomes are just 
formed.

Our labs have recently demonstrated that the peak of the VEIDase 
activity occurred approximately one week ahead of nuclear DNA 
fragmentation and loss of plasma membrane integrity during PCD in 
barley endosperm.24 Intriguingly, this proteolytic activity was strictly 
colocalized with monodansylcadaverine/LysoTracker Red‑positive 
autophagosomes. In the well‑defined sequence of cellular events 
underlying autophagic PCD of Norway spruce embryo‑suspensor 
(a temporary structure that functions as a conduit of nutrients and 
growth factors at the early developmental stage), the formation of 
autophagosomes characterizes the commitment phase of PCD.3,5,25 
Therefore accumulation of active VEIDase in autophagosomes24 
might represent a convergence point for the autophagic and proteo-
lytic pathways that is pivotal for the onset of the execution phase of 
plant PCD.

Degradation of cellular content during autophagic PCD is just 
one manifestation of the multifunctional process of autophagy 
recruited at diverse developmental and pathological settings to 
maintain homeostasis.26 Accordingly, formation of autophagosomes 
per se is not sufficient to conclude that the cell will ultimately die. 
Hence, autophagy appears to be an obligatory but not sufficient 
component of plant PCD. Recent work on the genetic and phar-
macological manipulations of the developmental and hypersensitive 
response‑associated PCD (HR PCD) in plants gives an insight into 
the fate of the cells destined to die, and the reaction of the whole 
organism in response to specific inhibition of the autophagic or 
proteolytic pathway.

Under normal physiological conditions, only a group of cells or 
a certain tissue are targeted to destruction in response to the death 
stimulus, while adjacent cells survive (Fig. 1B and C, wild type). 
For example, elimination of the embryo‑suspensor and survival 
of the embryonal mass is fundamental for plant embryogenesis, 
whereas localized cell death at the site of pathogen attack is an 
integral part of plant resistance. The contribution of autophagic 
machinery in virus‑induced HR PCD has been elegantly shown 
using ATG6/BECLIN 1‑silenced tobacco plants.27 In nonsilenced 
plants, HR was associated with increased autophagic activity and 
upregulation of ATG6/BECLIN 1 both in infected target cells 
and in uninfected adjacent cells, resulting in localized PCD and 
plant survival (Fig. 1C, wild type). Silencing of ATG6/BECLIN 1 
suppressed autophagosome formation in response to pathogen 
attack and led to unrestricted development of pathological cell  
death over the entire leaf tissue (Fig. 1C, autophagy deficiency) thus 

Figure 1. Relationship between autophagic and proteoloytic components in plant PCD at the cellular and organismal levels. (A) Model depicting subcellular 
distribution of a trio of key cell‑death proteases (active forms). Note autophagosomal/cytosolic localization of the VEIDase,22,24 which is activated by type‑II 
metacaspases (arrow). Autophagosomes are derived from the Golgi, proplastids or endoplasmic reticulum (ER) and are the hallmark of the commitment 
phase of PCD.3 VPE‑dependent growth of lytic vacuoles12‑15 and metacaspase‑mediated nuclear disassembly18 are characteristic for the execution phase. 
(B) Multicellular development and viability are reliant on keeping a balance between PCD and cell survival; only a certain subset of cells (target cells) should 
commit suicide in response to a death stimulus. (C) This balance does not occur in plants deficient for autophagy or lacking one of the key proteolytic activities. 
Autophagy deficiency leads to unrestricted pathological cell death in response to pathogen,27 whereas proteolytic dysfunction abrogates HR PCD during 
pathogen attack13 and terminal differentiation‑associated PCD during embryo patterning.22,30



138	 Autophagy	 2007; Vol. 3 Issue 2

Autophagic Programmed Cell Death in Plants

compromising plant survival.27 Interestingly, we had similar observa-
tions of unrestricted pathological death in Norway spruce embryos 
developed in the presence of the general autophagy inhibitor  
3‑methyladenine; the embryos did not differentiate suspensor cells 
(i.e., suppressed autophagic PCD) and possessed an abnormally 
high rate of embryo abortion (i.e., increased pathological death) 
(Filonova L, Bozhkov P, unpublished). Additional work is required 
to investigate how cells actually died in the both cases of autophagy 
deficiency.3,28

It is logical to conclude that autophagy has a dual role in plant 
ontogenesis, acting as a bona fide instrument in ordered cell disman-
tling during PCD (in contrast to animals, plants cannot choose 
between apoptotic and autophagic types of PCD29) and at the same 
time fulfilling its evolutionarily conserved pro‑survival role for the 
whole organism. In this context the central task for future work is 
to identify the molecular switch, which guides the cellular choice 
between “metabolic or selective autophagy” in living cells, and “bulk 
autophagy” degrading the entire cellular content during PCD.

The proteolytic pathway, like autophagy, is essential for the  
execution of plant PCD. Tobacco plants lacking all four VPEs 
showed suppressed HR PCD in response to viral infection, with no 
signs of pathological unrestricted death or developmental aberra-
tions13 (Fig. 1C, protease deficiency). Likewise, silencing of mcII‑Pa 
metacaspase or pharmacological inhibition of the VEIDase activity 
in Norway spruce embryos had a strong anti‑cell death effect, but in 
contrast to VPE knockout, led to developmental arrest early during 
embryogenesis owing to a lack of terminally‑differentiated suspensors 
(Fig. 1C, protease deficiency).22,30 Although autophagy and protease 
deficiencies exert opposing effects on the fate of the cells targeted to 
PCD (Fig. 1C), both situations may negatively affect plant growth.

It becomes increasingly evident that the concerted action of 
autophagic and proteolytic machineries controls execution of PCD 
in plants. In order to understand how autophagic PCD operates in 
plants, we need to address the roles of distinct ATG proteins, and 
determine the molecular identity of the autophagosomal VEIDase, 
and all other missing components of the plant PCD degradome 
including a panel of as yet unknown natural targets for cell‑death 
proteases. This is not a short‑term goal, but when achieved, it will 
not only improve our understanding of plant biology but also the 
evolution of eukaryotic cell death ‑ the way from the ancient and 
phylogenetically conserved autophagic PCD to the relatively young 
animal‑specific apoptosis.
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