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DNA methylation data assayed using pyrosequencing techniques are increasingly being used in human cohort
studies to investigate associations between epigenetic modifications at candidate genes and exposures to
environmental toxicants and to examine environmentally-induced epigenetic alterations as a mechanism underlying
observed toxicant-health outcome associations. For instance, in utero lead (Pb) exposure is a neurodevelopmental
toxicant of global concern that has also been linked to altered growth in human epidemiological cohorts; a potential
mechanism of this association is through alteration of DNA methylation (e.g., at growth-related genes). However,
because the associations between toxicants and DNA methylation might be weak, using appropriate quality control
and statistical methods is important to increase reliability and power of such studies. Using a simulation study, we
compared potential approaches to estimate toxicant-DNA methylation associations that varied by how methylation
data were analyzed (repeated measures vs. averaging all CpG sites) and by method to adjust for batch effects (batch
controls vs. random effects). We demonstrate that correcting for batch effects using plate controls yields unbiased
associations, and that explicitly modeling the CpG site-specific variances and correlations among CpG sites increases
statistical power. Using the recommended approaches, we examined the association between DNA methylation (in
LINE-1 and growth related genes IGF2, H19 and HSD11B2) and 3 biomarkers of Pb exposure (Pb concentrations
in umbilical cord blood, maternal tibia, and maternal patella), among mother-infant pairs of the Early Life Exposures in
Mexico to Environmental Toxicants (ELEMENT) cohort (n D 247). Those with 10 mg/g higher patella Pb had, on average,
0.61% higher IGF2 methylation (P D 0.05). Sex-specific trends between Pb and DNA methylation (P < 0.1) were
observed among girls including a 0.23% increase in HSD11B2methylation with 10 mg/g higher patella Pb.

Introduction

Environmentally-induced epigenetic alterations at susceptible
life-stages, such as in utero development, may persist and impact
disease risk later in life. Epigenetic changes have been associated
with early-life exposures to chemicals including bisphenol A,
genistein, persistent organic pollutants, arsenic, maternal smok-
ing, and cadmium in mice1-4 and in human birth cohorts.5-10

Lead (Pb) exposure is of global public health concern, and recent

studies suggest that Pb changes DNA methylation patterns
among rodents following perinatal exposure11,12 and is associated
with differences in DNA methylation in humans.13-17 However,
the impact of in utero Pb exposure on the epigenome of neonates
is understudied, and its impact on specific genes related to health
outcomes associated with Pb exposure remains unknown.

DNA methylation is the most widely studied epigenetic modi-
fication in human cohorts due in part to its implications for gene
regulation and development18,19 and the multitude of
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technologies designed to examine DNA methylation. Epige-
nome-wide technologies interrogate methylation at thousands to
millions of CpG sites,20 and quantitative and semi-quantitative
technologies such as pyrosequencing,21 Sequenom EpiTYPER,22

and methylation-specific PCR 23 interrogate methylation at spe-
cific loci. While epigenome-wide platforms have many advan-
tages, candidate loci approaches are economical and particularly
beneficial for studies with hypothesized genes of interest or for
validation purposes. As such, candidate loci approaches are well
suited for human cohort studies that investigate specific health
outcomes, and are preferable for large numbers of samples due to
lower cost.

Technologies for epigenome-wide and candidate approaches
differ not only in terms of study questions (discovery vs. testing
of specific pathways) and cost, but also in data quality manage-
ment. While statistical and bioinformatics pipelines for manag-
ing data from epigenome-wide technologies are constantly being
evaluated, quality control practices for candidate loci approaches
have been much less systematic. For example, data analysis tools
and methods have been developed to address experimental batch
effect, biases in array probe design, and dye bias in epigenome-
wide data.24-27 Normalization to internal controls and correc-
tion for batch effect are also standard to the data analysis pipe-
line for molecular biology methods including Real-Time
quantitative PCR.28,29 However, for candidate loci methylation
technologies, such data quality control methods are rarely dis-
cussed. While in some instances, batch effects are considered
and use of rigorous quality control is reported,30 often the data
are used as is and quality control consists of 2 known methyl-
ated controls (ambiguously called ‘low’ and ‘high’) on each
experimental plate.

In environmental epigenetics studies involving humans, the
biological significance of results is complicated by limitations
including source tissue available for DNA, timing of sample col-
lection for DNA extraction and exposure assessment, and small
effect sizes observed between exposures and epigenetic modifica-
tions. While the field works to address these issues, there is also a
need to improve and standardize quality control and statistical
procedures for handling candidate gene methylation data. The
reliability of the data and the ability to observe associations with
small effect sizes can be improved by implementing appropriate

quality control methods and by selecting statistical methods that
will maximize statistical power.

Using data from the Early Life Exposures in Mexico to Envi-
ronmental Toxicants (ELEMENT) birth cohort, this article pur-
sues 2 goals. First, we compared approaches for quality control
and data analysis relevant to environmental epigenetic studies uti-
lizing quantitative candidate loci methylation technologies such
as pyrosequencing. Models were compared using simulated data
that has similar characteristics to the data observed in the ELE-
MENT cohort. Since data are simulated according to a known
toxicant-DNA methylation association, analysis approaches can
be objectively evaluated. In particular, we discuss the need for
batch effect adjustments and modeling CpG site variance and
dependence when studying the relationship between environ-
mental factors and DNA methylation. Second, we evaluate the
influence of in utero Pb exposure (measured via 3 biomarkers) on
neonate DNA methylation (via bisulfite sequencing candidate
regions in umbilical cord blood leukocyte DNA with the pyrose-
quencing platform). In this cohort, we found modest evidence
for associations, often sex-and CpG site-specific, between in utero
leukocyte DNA methylation at long interspersed elements 1
(LINE-1), as well as growth-related genes IGF2 and HSD11B2.

Results

We first give descriptive analyses of the ELEMENT study data
that motivated our primary objective, followed by the results of
the simulation studies that demonstrate best practices for analyz-
ing this type of data, and finally show results of the Pb-methyla-
tion associations in the ELEMENT study.

Descriptive statistics of ELEMENT study data
Characteristics of the study population (n D 247 infant-

mother pairs) can be found in Table 1. The majority of infants
were full term (96.3%, gestational age �37 weeks) and male
(58.1%). Few mothers smoked as assessed immediately following
pregnancy (3.6% at one month post-partum). All subjects have
data from at least one Pb biomarker and methylation from one
genic region. 243 participants have methylation data for all genic
regions, and 202 have Pb measures in all 3 exposure biomarkers.

Table 1. Characteristics and Pb biomarker levels of study population.

n (%) Mean § SD

Infant Gestational age (weeks) 245 39.26 § 1.33
Male 143 (58.1%)

Female 103 (41.9%)
Birth weight (kg) 246 3.173 § 0.39

Maternal Age at delivery (years) 247 24.49 § 4.62
BMI (kg/m2, pre-pregnancy) 238 25.05 § 3.66

Smoking at 1 month postpartum 9 (3.6%)
Folate (mg intake/day) 247 366 § 144

Pb Biomarkers Umbilical cord blood Pb (mg/dL) 227 6.49 § 3.52*
Maternal tibia Pb (mg/g) 243 9.82 § 9.45
Maternal patella Pb (mg/g) 226 14.4 § 14.8

*Median umbilical cord blood Pb D 5.80 mg/dL
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Lead exposure biomarkers reveal a wide range in cord blood
Pb (1.2-29.9 mg/dL), maternal mid-tibia shaft Pb (¡20.8-
51.0 mg/g of bone), and maternal patella Pb (¡29.9-77.7 mg/g).
Negative point estimates for bone Pb can result when the true
value is close to zero due to normalization to bone density. Nega-
tive values passing other quality control checks are retained here
as this has been shown to be a better use of this type of data in
epidemiological studies.31,32 Tibia and patella Pb levels quanti-
fied at one month postpartum (Pearson r D 0.26, P < 0.001)
and patella and log-transformed cord blood Pb (r D 0.19, P D
0.006) are significantly correlated while cord blood Pb and tibia
Pb do not correlate strongly (r D 0.11, P D 0.1).

Table 2 shows CpG site-specific and average percent methyla-
tion across sites of repetitive elements (LINE-1) and 3 candidate
genes quantified via pyrosequencing using bisulfite converted
DNA from umbilical cord blood leukocytes. Means and
between-subject variance in percent methylation differed across
sites from the same genic region. Supplemental Table S1 pro-
vides correlations of methylation among CpG sites for LINE-1
and 3 genes. While some pairs of sites are highly correlated with
respect to their percent methylation, others are not, and yet
others exhibit negative correlations.

ANOVA revealed batch effects in both DNA methylation and
lead biomarkers. Significantly different average methylation levels
by experimental plate for all 4 candidate regions were found
(Table S2). IGF2 batches produced the largest plate-to-plate
methylation difference (8.8% difference between plates with
highest and lowest averages). Tibia Pb and patella Pb levels also
differed when comparing groups of subjects in each pyrosequenc-
ing batch (Table S2) with a difference as large as 9.93 mg/g aver-
age patella Pb observed between the subjects on 2 LINE-1 plates.
Although differences in lead biomarkers were not related to the
pyrosequencing procedure, not accounting for these differences

could lead to inflated Type I error, thus complicated data
analysis.

Comparisons of modeling approaches and batch adjustment
Statistical model comparisons

Using a simulation study, we compare ordinary least squares
(OLS) regression (where the average among CpG sites is taken to
obtain a single outcome measure per individual) and 2 marginal
models for repeated measures, the General Linear Model (GLM)
and generalized estimating equations (GEE) (where the actual
values at each CpG site are treated as a multivariate outcome)
with regard to their performance (bias and power) when estimat-
ing the association between a toxicant and DNA methylation.33

Repeated measures models have utility in DNA methylation
studies because, in addition to estimating the toxicant-DNA
methylation relationship averaged across sites, they can also be
used to rigorously test whether the association varies across CpG
sites, and may have higher power than OLS.

Figure S1 compares several approaches to modeling DNA
methylation data in the absence of batch effects using simulated
data. While all approaches yield consistent estimates of the toxi-
cant-DNA methylation association (not shown), the General Lin-
ear Model (GLM) for repeated measures that explicitly models
both the site-specific variances and an unstructured correlation
matrix among sites yields higher power to detect associations
when data have differences in variances across sites similar to those
observed in the ELEMENT data. Differences in power are more
pronounced for HSD11B2 (Fig. S1B) compared to IGF2
(Fig. S1A) due to more pronounced differences in the variances
(Table 2) and pairwise correlations (Table S1) among sites. In the
absence of differences in variances across sites, the GLM does not
lose power compared to other approaches (not shown). Since

Table 2. Percent of methylated cells at four candidate regions. Site-specific methylation and average of 4 CpG sites for repetitive elements, LINE-1, 4
sites within H19 and HSD11B2, and 3 sites for IGF2 are reported. Standardized values were adjusted for batch. LINE-1 was adjusted for batch by subtracting
the 0% control value for each CpG site from the experimental plate each sample was run on. IGF2, H19, and HSD11B2 values were adjusted to a standard
curve of control DNA (ranging between 0 and 100%) run for each CpG site on the corresponding experimental plate for each sample.

CpG Site n Raw Data Mean § SD Standardized Mean § SD

LINE-1 (%) Average 246 83.8 § 1.9 80.8 § 2.3
1 246 85.9 § 2.1 83.4 § 2.3
2 246 86.1 § 1.7 83.0 § 3.0
3 246 84.2 § 2.8 81.0 § 3.1
4 246 79.1 § 2.4 75.8 § 2.5

IGF2 (%) Average 243 59.5 § 5.2 62.5 § 7.3
1 243 58.6 § 6.0 58.0 § 9.5
2 243 60.4 § 5.2 67.4 § 6.6
3 243 59.3 § 5.2 62.2 § 8.5

H19 (%) Average 246 64.3 § 3.4 66.3 § 4.1
1 246 66.7 § 3.9 65.0 § 4.5
2 246 63.6 § 3.4 62.4 § 3.6
3 246 63.7 § 3.4 66.5 § 5.3
4 246 63.2 § 3.5 71.4 § 5.2

HSD11B2 (%) Average 247 2.13 § 1.37 4.20 § 2.33
1 247 2.65 § 1.78 6.42 § 2.61
2 246 0.65 § 1.64 2.40 § 3.61
3 236 3.92 § 2.46 1.30 § 4.25
4 228 1.30 § 1.65 6.69 § 2.97
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differences in variance across sites are common, and pairwise cor-
relations among sites do not necessarily follow a particular pattern,
the GLM is preferred over GEE, and much more so than OLS.

Batch effect adjustment methods

Two methods to control for batch effect are compared to no
batch correction. One approach is to add a random intercept for
each experimental plate to the above described models. Another
approach is to standardize the data using plate- and site-specific
standardization curves constructed using methylation data from
control samples with known methylation values. Figure 1 shows
the bias and power that can be expected using these methods for
batch correction (numbered according to the models described
in Table 3); results when using the GLM approach in the ideal
case of no batch effects and when using OLS are included as ref-
erence. Figure 1 shows that although both approaches have

similar power, the approach using
only random effects for plate
yields biased effect estimates. The
extent of the bias when the raw
data are used depends on the
extent to which the plate- and
site-specific standardization curves
deviate from the 45 degree line: if
the standard reference curves are a
straight line with slope other than
one, biased associations will be
obtained when using raw data.

Using standard curves to adjust
for batch effects will consistently
give unbiased associations. How-
ever, this approach may suffer loss
of power depending on the fit of
the standard curves (Fig. S2).
If the standard curves fit well,
then the standardization process
will lead to estimating unbiased
associations without loss of
power. When appropriate, includ-
ing a random intercept for batch
to Model 4 may help gain power
back, while keeping associations
unbiased (Fig. S2, Model 4RE).

Associations between in utero
lead exposure and DNA
methylation in the ELEMENT
study

Primary findings

Tables 4 and S4 show the esti-
mated associations between 3 lead
exposure biomarkers and DNA
methylation using the GLM for
repeated measures using plate-
and site- specific standardized

methylation measures (i.e., model #4 in Table 3) adjusting for
gestational age, sex, and maternal folate intake. We found the
patella lead biomarker was associated (P D 0.05) with IGF2
hypermethylation (0.6% methylation per 10 mg/g patella Pb)
and marginally (P D 0.06) associated with hypermethylation of
the HSD11B2 promoter (0.1% methylation per 10 mg/g patella
Pb).

Site-specific effects

Differences in CpG site-specific relationships with Pb were
tested with a type III test of fixed effects for the interaction
between Pb and CpG site in a given genic region. Results
revealed several significant interactions between Pb and CpG
site: IGF2 and tibia Pb, LINE-1 and patella Pb, H19 and patella
Pb. Only the interaction between patella Pb and LINE-1 sites
remained significant following Bonferonni correction for

Figure 1. Simulation study findings. Bias in estimated coefficients and power to detect significant toxicant-
DNA methylation associations from 5 approaches (see Table 3), when data are generated to follow a similar
structure to IGF (A and B) and HSD11B2 (C and D) methylation in the ELEMENT study (see Table S3 for simu-
lation settings). For the batch-adjustment method using control samples, the scenario with standard curves
having R2 D 0.99 (as we had in the ELEMENT study) is shown here. Bias and power are calculated from the
average of 1000 data sets, each with 220 subjects.
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multiple testing (P � 0.004, Table S5). LINE-1 CpG site #2, but
not other sites, exhibits hypermethylation with higher patella Pb
levels, a relationship also apparent when separate linear regression
models are run for each CpG site (Table S5).

Sex-specific effects

To explore sex-specific relationships, an interaction term was
added between Pb and sex in Model #4. Results are reported for
models with a Pb-methylation association with P < 0.1 in at least
one sex following stratification (Supplemental Table S6). Three
suggestive relationships between Pb biomarker levels and methyl-
ation were observed solely among females. For example, a natu-
ral-log unit higher cord blood Pb among females is associated
with 3% lower methylation in IGF2. This decrease (P D 0.04)
would not withstand correction for multiple hypothesis testing
and is not observed among the males (Fig. 2). HSD11B2 hyper-
methylation was noted with higher patella Pb levels among both
males and females, though effect size was greater and only mar-
ginally significant among females (Fig. 3, Tables 4 and S6).

Sensitivity analyses

Relationships between Pb and methylation remained consis-
tent (direction, attainment of statistical significance) between
continuous and categorical bone Pb models (data not shown).

Furthermore, exclusion of one patella Pb outlier in the continu-
ous Pb models did not substantially alter reported results; in
IGF2 and HSD11B2 models, statistical significance increased
when excluding the outlier. Because it is unknown if true methyl-
ation differences due to exposures are in an absolute scale or if the
exposure effects are proportional to the variance at the CpG site,
we created Z-scores for each CpG site and estimated Pb-methyla-
tion relationships using Model #4 with the Pb-by-site interaction
term. Similar relationships were observed (see one example in
Table S5).

Modeling ELEMENT data using other approaches
As an example of the difference in inferences that can be

obtained with other common statistical approaches using real
data, we also fitted the remaining models described in Table 3.
In all cases, the models were adjusted for gestational age, sex, and
maternal folate intake (see Tables 4 and S4 for results). Substan-
tial changes to direction of effect and statistical significance occur
when batch is accounted for via standardized methylation values.
For example, the relationship between hypomethylation of
LINE-1 and patella Pb apparent with Model #1 disappears
(Table S4, Model 1 vs. Model 5 both using OLS). In contrast,
an association between HSD11B2 hypermethylation with higher
patella Pb emerges (Table 4, Model 1 vs. either Model 4 or
Model 5 depicted in Fig. 3). Similarly, substantial changes to

Table 3. Statistical models tested. Models used to examine associations between Pb biomarker levels and DNA methylation at LINE-1, IGF2, H19, or
HSD11B2. Model #4 was considered the best approach though additional modeling types that are sometimes used with candidate gene methylation data
were run for comparison purposes.

Model Batch Adjustment DNA Methylation Outcome

1. OLS None Average of all CpG sites
2. GLM* observed data None Individual CpG sites
3. GLM* observed data C RE batch Random intercept for batch Individual CpG sites
4. GLM plate standardized data Site-and plate- specific standard curve Individual CpG sites
5. OLS plate standardized data Site-and plate- specific standard curve Average of all CpG sites

*General linear model for repeated measures using unstructured variance-covariance matrix

Table 4. IGF2 and HSD11B2 models. Estimates and p-values for the regression of methylation at IGF2 or HSD11B2 on each Pb biomarker are noted for a
series of models described in Table 3. All models adjusted for sex, gestational age, and maternal folate intake, and models 2–4 also adjust for CpG site. Mod-
els included all subjects with available data (n D 223, 237, 221 for IGF2models with umbilical cord blood, tibia, or patella Pb, respectively; n D 227, 241, 224
for HSD11B2models with umbilical cord blood, tibia, or patella Pb, respectively).

Umbilical Cord Blood Pb Tibia Pb Patella Pb

Gene Model Estimate# (SE) P-value Estimate* (SE) P-value Estimate* (SE) P-value

IGF2 1 ¡0.33 (0.73) 0.65 ¡0.54 (0.36) 0.13 0.37 (0.23) 0.12
2 ¡0.79 (0.63) 0.21 ¡0.53 (0.32) 0.10 0.16 (0.21) 0.45
3 ¡0.48 (0.55) 0.38 ¡0.26 (0.28) 0.35 0.11 (0.18) 0.57
4 ¡1.36 (0.92) 0.14 ¡0.00 (0.45) 0.99 0.61 (0.30) 0.05
5 ¡1.17 (1.00) 0.24 ¡0.52 (0.50) 0.30 0.53 (0.34) 0.11

HSD11B2 1 ¡0.04 (0.19) 0.84 ¡0.07 (0.09) 0.46 ¡0.01 (0.06) 0.84
2 ¡0.10 (0.17) 0.57 ¡0.08 (0.08) 0.34 0.01 (0.05) 0.78
3 ¡0.10 (0.16) 0.56 ¡0.08 (0.08) 0.33 0.02 (0.05) 0.65
4 ¡0.07 (0.25) 0.76 ¡0.06 (0.12) 0.61 0.14 (0.08) 0.06
5 ¡0.18 (0.32) 0.57 ¡0.01 (0.16) 0.95 0.22 (0.10) 0.04

#difference in % methylation per 1 log-unit increase in cord blood Pb
*difference in % methylation per 10 mg Pb/g bone
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effect size and significance level were noted for associations
between patella Pb and both IGF2 and HSD11B2 methylation
(Table 4) when comparing to no batch adjustment (Model #2).
Controlling for batch via a random intercept (Model #3) in
many cases diminished the estimated association (Tables 4 and
S4) as can be expected given the simulation study findings.

Discussion

This study highlights the need to carefully consider statistical
modeling and batch adjustment approaches in environmental
epigenetic studies with candidate region methylation data
obtained using platforms such as pyrosequencing. Based on
results from both real data examples and simulation studies that
objectively compared modeling and batch adjustment
approaches, we draw several recommendations that are particu-
larly geared toward the environmental epigenetics field and other
studies expecting small effect sizes for the variables of interest on
DNA methylation. We recommend: 1) carefully checking for
and correcting for batch effects; 2) utilizing models for repeated
measures that incorporate the actual values at each CpG site in
the interrogated region and, within those models, specifically
modeling site-specific means and variances in methylation; and
3) evaluating site-specific and sex-specific effects.

In the ELEMENT study data, we observed modest evidence
for an association between in utero Pb exposure and changes to
umbilical cord blood leukocyte DNA methylation. IGF2 and
HSD11B2 methylation was higher among those with higher
maternal patella Pb levels, and several Pb-methylation relation-
ships were observed among newborn girls but not boys. Although
none of these relationships remain significant after adjusting for
multiple hypothesis testing (P � 0.004) except a significant inter-
action between LINE-1 CpG site and patella Pb driven by the
second CpG site, these findings point out the importance of
exploring site- and sex-specific effects to better understand poten-
tial biological mechanisms. Alterations to DNA methylation,
specifically of growth-related genes, from in utero Pb exposure
(for which patella Pb serves as a biomarker34) have the potential
to impact childhood growth and development. In ELEMENT
and other cohort studies, in utero Pb exposure has been shown to
impact size at birth,35-37 growth trajectories and size throughout
infancy38, and childhood39 in a sex-dependent fashion.39 Further
study of the impact of Pb exposure on the DNA methylome is
warranted as previous perinatal rodent studies11,12 and adult
cohort studies13,14,16,17 found links between Pb exposure and
percent DNA methylation at various lifestages, and only 3 genes
and LINE-1 repetitive elements were interrogated in this study.

Experimental batch effects are known to be problematic and
are now routinely corrected for in molecular biology techniques
including gene expression analysis with Real Time quantitative-
PCR28,29 and array-based platforms for interrogating DNA
methylation across the epigenome.24,26 By contrast, quality con-
trol measures vary widely for pyrosequencing and other high-
throughput platforms for quantifying DNA methylation at
candidate regions. Many laboratories have developed stringent
validation procedures for new pyrosequencing assays that exam-
ine full standard curves from commercially available unmethy-
lated and methylated standards or various homemade standards
(e.g., plasmid control DNA,40 multiple displacement based
whole genome amplification with or without SssI-methylase treat-
ment41). While some high-throughput studies standardize sam-
ple methylation levels to controls included in each batch,30 this is
not a widespread practice. In multiple batch studies, we highly

Figure 2. Umbilical cord blood Pb and IGF2methylation stratified by sex.
Percent methylation in umbilical cord blood leukocyte DNA of the
imprinted gene, IGF2, decreased with cord blood Pb solely in girls. After
adjusting for gestational age and maternal folate intake, one natural-log
unit increase in cord blood Pb was associated with a 3% decrease in IGF2
methylation among girls (P D 0.04) and the decrease among boys was
not significant (P D 0.66). IGF2 data were first adjusted by a standard
curve of known methylated or unmethylated controls from each experi-
mental batch.

Figure 3. Maternal patella Pb and HSD11B2methylation stratified by sex.
Percent methylation upstream of the HSD11B2 promoter in blood leuko-
cyte DNA increased with maternal patella Pb levels, indicative of in utero
exposure. In a repeated measures model adjusting for gestational age
and maternal folate intake, a 10 mg/g increase in maternal patella Pb of
the girls was associated with a 0.23% increase in HSD11B2 methylation
(near significant, P D 0.07). The increase was less notable among boys
(P D 0.41). All methylation values were first standardized to known con-
trol curves from the same experimental batch.
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recommend statistically testing for batch effects in data from each
candidate region before proceeding with further data analysis to
avoid reporting spurious results. Certain regions may be more
prone to batch effects in bisulfite sequencing than others. Batch
effects likely stem from the PCR step as biased amplification of
bisulfite converted DNA can occur when the melting tempera-
ture differs by methylation status of the template.42 Repetitive
elements such as LINE-1 represent a special case in which a con-
sensus region of thousands of LINE-1 elements are amplified,
and the proportion of specific LINE-1s amplified each time can
differ leading to slight variations in quantified methylation.

Accounting for batch effects is important in environmental
epigenetics studies where the magnitude of change from exposure
is expected to be small (<0 .5 SD as we observed) or is similar to
the batch effect size. Adjusting for batch effects will often remove
the potential for bias in associations and increase power to detect
associations since between-batch variation is removed. Adding
batch as a random effect when evaluating associations between
variables of interest (e.g., chemical exposures) and DNA methyla-
tion is one potential correction method (see Model #3, Table 3).
However, in the ELEMENT data we discovered that exposure
levels happened to vary by group of subjects included in the
experimental batches (Table S2). Samples were placed in experi-
mental batches (PCR plates) ordered by subject ID, a common
practice in high-throughput analyses. Batches of subjects had dif-
ferent Pb levels which may have correlated with recruitment fac-
tors (e.g., timing, region). Randomizing subjects by exposure
level on experimental plates is one practice that would eliminate
this problem. Between-batch differences in Pb levels prompted
us to consider and evaluate other approaches to correct for batch
effects.

We found through simulation studies that standardizing to a
control curve has comparable power to including random effects
for batch, and in addition removes attenuation bias in the esti-
mated effect size that remains when adjusting for batch using ran-
dom effects. In the emerging environmental epigenetic literature,
the practical importance of small effect sizes may be called into
question since detected associations may be small. Not standard-
izing to batch standard-curves will yield attenuated associations
when standard curves have slopes less than 1.

Platforms such as pyrosequencing and Sequenom Epi-
TYPER can quantify methylation at several CpG sites within
the same region. Typically, percent methylation at neighboring
CpG sites is highly correlated, though individual CpG sites can
be differentially methylated and/or have roles in gene regulation
(due to location in a transcription factor binding site, for exam-
ple).43,44 Further, between-subject variation may differ across
CpG sites. Statistical analysis often involves averaging methyla-
tion across all quantified sites (see Models #1 and 5, Table 3).
Along with others in the field, we recommend further evalua-
tion of CpG site-specific effects by treating methylation meas-
ures at each site as a repeated measure using a model that
explicitly models the variances and correlations across sites
(Models #2–4).1,5,45-47 This approach yields higher power to
detect associations compared with the OLS approach that aver-
ages site methylation data (Model #5). Incorporating the

correct variance-covariance structure in repeated measures mod-
els is known to increase the precision of effect.33 Utilizing an
unstructured covariance matrix allowed us to best approximate
the true relationships between CpG sites in an interrogated
region which differed widely by genic region (Table S1), and
did not incur loss of power due to estimating 6–10 variance-
covariance parameters. Difference in within-gene CpG site var-
iances and correlations across assayed regions has also been
observed in other studies.48

An additional advantage of the repeated measures model is the
ability to test whether specific CpG sites have distinct relation-
ships with exposure by adding an interaction term between site
and exposure to the model (Table S5), a method others have
found useful in determining labile CpG sites.1 Upon performing
this analysis, a relationship between patella Pb and hypermethyla-
tion of LINE-1 CpG site #2 was identified (Table S5). Although
this relationship could also be identified in individual models run
for each LINE-1 CpG site, a formal assessment of whether the
associations differ across sites cannot be readily computed. The
repeated measures model has the advantage of estimating and
testing differences in site-specific relationships within a single
model.

DNA methylation patterns differ between the sexes.5,49,50

Sex-specific relationships between toxicant exposures and DNA
methylation have been observed in animals11 and humans.7,9,51

In this study, LINE-1 was hypomethylated in girls compared to
boys regardless of exposure (ANOVA PD 0.04, data not shown),
a pattern previously observed in the Center for the Health Assess-
ment of Mothers and Children of Salinas (CHAMACOS)
cohort5 and among adults.50 Results following sex stratification
suggested that DNA methylation in girls at LINE-1, IGF2, and
HSD11B2 may be more sensitive to change following in utero Pb
exposure, though sample size was small and significance marginal
(Table S6, Figs. 2 and 3). Including sex stratification or expo-
sure-sex interaction terms in statistical procedures is crucial when
evaluating relationships between DNA methylation and exposure
or health outcomes.

While many environmental epigenetic studies report associa-
tions between percent DNA methylation at specific genes and
exposures, the effect size is often small in both epidemiological
birth cohort studies6-8,52 and adult cohort studies.16,17 For exam-
ple, given the estimated 0.14% difference in HSD11B2 methyla-
tion per 10 mg/g higher patella lead, we would expect those with
the 75th percentile patella Pb concentration to differ by 0.27%
methylation (or 0.45% methylation among girls) compared to
those with the 25th percentile of patella Pb. The biological signif-
icance of such a small change on gene expression, recruitment of
binding proteins, other epigenetic modifications, or downstream
health outcomes is uncertain. Even so, this difference of 0.27% is
equivalent to 0.2SD of HSD11B2, and an entire range increase
(minimum to maximum) is expected to produce a 0.9 SD
increase in HSD11B2 methylation among girls. Certain regions
of the genome exhibit greater methylation variability and may be
responsive to environmental influences, especially during early in
utero development. If environmental factors such as Pb influ-
enced >0.5 SD of percent methylation in these regions, termed
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metastable epialleles,53-55 the change could be biologically
significant.

Environmental epigenetics has emerged as a field with
immense promise to identify 1) early life exposures causing per-
sistent changes to the epigenome that may impact disease suscep-
tibility,56 2) epigenetic biomarkers of past exposures that cannot
be measured,6,17 or 3) reversible epigenetic modifications to tar-
get therapeutically or nutritionally.57 Thus, despite limitations
and uncertainty in the current state of environmental epigenetics
research, important links have been made between early life expo-
sures and epigenetic modification in animal models 1-4 and
humans.5-10 Incorporation of stringent quality control measures
in the laboratory and careful statistical analysis of data following
recommendations described in this article will increase confi-
dence in results obtained from quantitative bisulfite sequencing
of candidate regions. This will enable researchers to better evalu-
ate associations between exposures and DNA methylation at key
genes. Coupling methylation data with gene expression and
health outcome data (statistically via meditational analyses) will
further improve our understanding of the biological implications
of observed changes.

Materials and methods

ELEMENT study
Sample population

In 1994 and 1995, mother-infant pairs were recruited at deliv-
ery at 3 Mexico City hospitals as the first cohort of the Early Life
Exposures in Mexico to Environmental Toxicants (ELEMENT)
study. ELEMENT Cohort I was originally designed to test the
ability of calcium supplementation to decrease maternal to infant
Pb mobilization during lactation. Exclusion criteria included liv-
ing outside the metropolitan area, multiple fetuses, and maternal
conditions that could interfere with in utero development (e.g.,
preeclampsia, gestational diabetes, seizure disorders, psychiatric,
kidney or cardiac diseases). Full exclusion criteria and cohort
details are described elsewhere.36,38

Umbilical cord blood samples were collected from the neo-
nate. Maternal and neonate anthropometry was recorded within
12 hours of delivery by trained obstetric nurses as previously
detailed.35,36 Mother-infant pairs visited the research center at
one month postpartum (§5 days) for further evaluation and
maternal bone Pb measurement. Of 617 mother-infant pairs
who participated in the calcium supplementation trial, 248
umbilical cord blood samples were available for DNA extraction
for the current investigation. Of these, high quality DNA was
extracted from 247 infants, and these subjects are included in the
analyses described herein.

Study procedures and strategies for Pb exposure reduction
were explained to participating mothers, and mothers provided
written consent. The research protocol was approved by the
Human Subjects Committee of the National Institute of Public
Health of Mexico, participant hospitals, and the Internal Review
Board at all participating institutions including the University of
Michigan.

Questionnaires

Mothers were interviewed at one-month postpartum to
obtain information on demographic characteristics, health status
of the mother and infant, smoking, and reproductive history.
Gestational age was extracted from the medical record. A semi-
quantitative food frequency questionnaire was administered to
estimate maternal intake of nutrients during pregnancy. This
questionnaire was previously validated in women living in
Mexico City.58

Lead (Pb) measurements

In utero Pb exposure was approximated via Pb levels in 3 bio-
markers: umbilical cord blood, maternal tibia, and maternal
patella using methods previously described.36,38 In brief, blood
Pb was quantified via atomic absorption spectroscopy with a Per-
kin-Elmer 3000 (Chelmsford, MA) at the American British
Cowdray Hospital in Mexico City. Good precision and accuracy
was obtained when comparing measurements with blinded repli-
cates performed at the Wisconsin State Laboratory of Hygiene
for quality control purposes.36 Cortical (left mid-tibia shaft) and
trabecular (left patella) bone Pb measurements were obtained
from mothers at one month post-partum using a spot-source
109Cd K-XRF instrument. Details on the physical principles,
technical specifications, and validation of the method were previ-
ously described.31,59,60 The Pb fluorescent signal is normalized to
an indicator of bone density - the scattered g-ray signal stem-
ming from calcium and phosphorus in bone mineral – which
results in negative values in some instances. Each K-XRF mea-
surement also comes with an estimate of the uncertainty (e.g.,
measurement error which is increased by factors such as low
bone density and obesity). Here, bone Pb measurements were
excluded if the uncertainty estimate was >15 for patella Pb or
>10 for tibia Pb.

Epigenetic analyses

DNA was isolated from umbilical cord blood leukocytes by
the Harvard-Partners Center for Genetics and Genomics using
PureGene kits (Gentra Systems) and stored at ¡80�C before
transfer to the University of Michigan on dry ice.61 DNA con-
centration was quantified with a NanoDrop 2000 (ThermoFisher
Scientific). Genomic DNA (0.5–1 mg) was bisulfite converted
according to standard methods with EpiTect Bisulfite Kits (Qia-
gen). This treatment converts unmethylated cytosine to uracil
(and ultimately thymine following PCR) while leaving methyl-
ated cytosine intact.62

DNA methylation (percent of methylated cells) was quantified
via pyrosequencing at global repetitive elements (LINE-1) and 3
genes important for early growth (IGF2, H19, HSD11B2).63,64

Methylation at 4 CpG sites in LINE-1 was quantified via our
previously published assay.46 Differentially methylated regions
(DMRs) of the imprinted genes, IGF2 (upstream of imprinted
promoter at IGF2 exon 3) and H19 (upstream of H19 within the
imprint control center), were interrogated based on validated
assays.65 PyroMark Assay Design Software version 2.0 was used
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to design the pyrosequencing assay for HSD11B2 to include 4
CpG sites in a CpG island upstream of the gene promoter
(region described by66). For each region, the sequence was ampli-
fied from approximately 50 ng bisulfite converted DNA by Hot-
StartTaq Master Mix (Qiagen) and forward and reverse-
biotinylated primers. Percent of methylated cells at each region
was quantified by the PyroMark MD Pyrosequencer Platform
(Qiagen) and computed by Pyro Q-CpG Software. The software
incorporates controls to check for completed bisulfite conversion
and adequate signal over background noise. All samples were run
in duplicate, and duplicate reads were averaged. Each assay was
validated in the lab by running 6 point standard curves made
from serial dilutions of 0 and 100% methylated human control
DNA (Qiagen). Every experimental plate (batch) contained at
least 4 point standard curves, except LINE-1 plates which only
included 0 and 100% methylated control DNA. Measures of
methylated control DNA were precise across 96-well plates (e.g.,
<10% coefficient of variation, CV, for 100% controls). Dupli-
cate samples had good precision for IGF2 (mean 1.8% CV),
H19 (1.8% CV), and LINE-1 (1.4% CV). Methylation of
HSD11B2 was consistently low (<10%) and variable (36% CV
among duplicate samples).

Simulation study to evaluate modeling and batch adjustment
approaches

Modeling strategies

Ordinary least squares (OLS) regression is commonly used to
estimate relationships among DNA methylation and covariates;
in this approach data from multiple CpG sites for a given locus
are averaged to obtain a single outcome measure per individual.
This approach ignores differences in mean, variance, and pair-
wise correlations among CpG sites. Instead, models for multi-
variate data (i.e., multiple outcome measures per individual) can
be used, to directly use the actual values at each CpG site.66

Furthermore, models for repeated measures can be used to rig-
orously test if the toxicant-DNA methylation association varies
across CpG sites. While separate OLS models can be fit to each
site, a test of whether the associations differ by site cannot be
readily obtained.

Models for repeated measures include random effects (RE)
models or marginal models. The general linear model (GLM) for
repeated measures and generalized estimating equations (GEE)
are 2 marginal models that, in the case of continuous outcomes,
primarily differ in how variances across sites are modeled: widely
available software implementations of GEE typically assume
variances are equal across sites, whereas implementations of
GLM explicitly require a model for the variances as well as the
correlations. A random effects model with a random intercept is
equivalent to a GLM with a compound symmetry assumption,
and gives the same estimated association as GEE with exchange-
able correlation structure. Although robust standard error estima-
tors are available to guard against incorrect modeling of the
variance-covariance structure among repeated measures in the
GEE approach, it is well known that mis-specified variance-
covariance have lower power.33 We used simulated data where

toxicant-DNA methylation associations are known to compare
these modeling approaches.

Batch adjustment

The most common method for batch adjustment is to con-
sider batch effects as randomly shifting the means of the methyla-
tion values by a similar amount for all samples in a plate and to
model the data including a random intercept for plate in mixed
effects models. However, this adjustment method may not be
appropriate because the batch effects can potentially vary by
CpG site, not only in the mean but also by shifting the scale of
the measure (see intercepts and slopes in Table S3). An alterna-
tive is to correct for batch effects by standardizing methylation
data at each CpG site to a standard curve for that site constructed
using measures for known unmethylated and methylated control
DNA run on each experimental plate. In the ELEMENT data,
the standard curves for H19, HSD11B2, and IGF2 were linear
with slopes less than one; i.e., observed methylation for control
sample D â C ŝ*known value of control sample, with ŝ < 1 being
the estimated slope of the plate- and site-specific curve, and â the
estimated intercept, Table S3). For the subjects in the study, the
standardized values are calculated as (observed sample- â)/̂s.

Simulated data

To objectively evaluate the modeling strategies and batch
adjustment approaches, we simulated data that were similar to
the ELEMENT data, but where the association between a toxi-
cant and DNA values were known. First, data were simulated
without batch effects (called “true data”) using Yij,true D b0j C b1

Xi C eij, where b0j is the mean of site j (See Table 2), Xi had a
normal distribution with mean 14.4 and SD D 14.8 (similar to
patella bone lead), and eij had correlation structure similar to
observed in the ELEMENT data (Table S1). The standard devia-
tions of eij were set equal to those observed in ELEMENT
(Table 2) or fixed to be equal for all sites (as the average of the
standard deviations across the sites). The value of the association,
b1, was set to vary from 0 to 0.15; within this range, the power
to detect the known associations ranges from 0.05 (Type I error)
to 1.

“Observed data” with batch effects were simulated as Yij,obs D
akj C skj * Yij,true, where akj and skj were random batch effects spe-
cific to site j and plate k generated from a normal distribution
mean and standard deviation similar to what was observed in the
ELEMENT data (see Table S3). To mimic the fact that in a real
situation the intercept and slopes of the standard curve are esti-
mated, we generated standardized data as Yijk,std D(Yij,obs ¡ âkj)/
ŝkj, where âkj D akj C dkja and ŝk D sk C dkjs include estimation
errors, dkja and dkjs; if we used the generated akj and skj we would
recover exactly the “true data” Yij,true. Following simple linear
regression formulae, the variance of the estimation errors, dkja
and dkjs, were chosen such that the R2 of the fitted standard
curves were, on average R2 D 0.999, 0.99 and 0.88. For each
combination of parameters (b1, R2, variance and correlation
structure of eij) 1000 datasets, each with 220 subjects, were
generated.
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Models fitted and model performance measures

We fitted the models described under “Modeling strategies” to
show the performance of the various modeling approaches. Aver-
age bias (i.e., difference between estimated and known b1 across
the 1000 simulated data sets) and empirical power (the propor-
tion of times the hypothesis H0: b1 D 0 was rejected in the 1000
simulated datasets) were computed. The GLM model with
unstructured variance-covariance matrix was shown to have the
best performance (high power and unbiased estimates). Next, we
fitted the GLM to Yij,obs, Yij,std, and also the GLM with a random
intercept for batch to examine impact of the adjustment method
on bias and power. For comparison to what is typically done, we
also fitted OLS to person-specific average (averaged across site).

Statistical analyses of ELEMENT study data
All statistical analyses were performed with SAS 9.3 (SAS

Institute). Univariate statistics and distributions of variables were
examined. Cord blood Pb was natural log-transformed in all
analyses. Lead exposure biomarkers and methylation values for
each candidate gene were compared across experimental batches
(one batch D same PCR plate and same pyrosequencing date) by
ANOVA (used Welch’s ANOVA if variances were not homoge-
nous). Bivariate and multivariable analyses were conducted to
examine the association between biomarkers of in utero Pb expo-
sure (cord blood Pb, maternal tibia Pb, maternal patella Pb) and
DNA methylation levels at 4 candidate regions (LINE-1, IGF2,
H19, and HSD11B2). Given the results of the simulation study,
Model 4 (Table 3) was used as the primary modeling approach.
Results were considered statistically significant at the P < 0.05
level, but also discussed in the context of multiple hypothesis test-
ing (12 Pb-gene relationships) with a P-value �0.004. Multivari-
able analyses using different modeling strategies and methods for
batch adjustments (Table 3) were also employed to compare the
methods in a real data example.

Covariates

All models included child’s sex, gestational age, and estimated
maternal folate intake during pregnancy, which are biologically
relevant predictors of methylation. Inclusion of additional covari-
ates (indicators of maternal socioeconomic status, maternal
smoking history) selected using backward elimination for specific
genes did not substantially change reported results.

Site- and sex-specific effects

Model #4 was run with an interaction term between CpG site
and Pb to assess whether individual CpG sites had different rela-
tionships with Pb. To examine sex-specific effects which are of
increasing importance in public health research, Model #4 was

also run with an interaction term between sex and Pb.67 If the
interaction term and/or main effect of Pb had P< 0.1, the model
was run following sex stratification.

Sensitivity analyses

Sensitivity analyses revealed 3 highly influential data points
for LINE-1, IGF2, and H19 with percent methylation outside of
the expected range. These data points were removed in all
reported analyses. Model #4 was also run after removing one
patella Pb outlier. Further sensitivity analyses involved using
quartiles of tibia and patella Pb instead of the continuous variable
to remove any potential influence of the negative bone Pb meas-
ures (which were classified as the lowest quartile). Since range
and variance of methylation values within genes differed across
CpG sites, and it is unknown if toxicants influence methylation
in the absolute scale (e.g., equal % difference across all sites), or
in a scale relative to standard deviation (e.g., effect is in units of
% difference/standard deviation at the CpG site), a separate anal-
ysis was performed (Model #4 with and without Pb by CpG site
interaction term) using z-scores for each CpG site (i.e., data were
converted to have mean 0, SD 1 for each site).
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