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ABSTRACT
Nearly, a quarter of the world’s population does not have enough
food for normal living and nearly 1 billion people become hungry
every year. One of the reasons for undernourishment and hunger
is drought, which reduces agricultural production leading to food
insecurity situation. In half of the years of the twenty-first century,
drought was the main cause of shortage in world grain produc-
tion compared to its consumption, creating problem with food
security. In November 2017, a new generation of NOAA oper-
ational satellite, JPSS-1, with VIIRS instrument on board was
launched. Regarding land cover monitoring, the system was
designed to advance drought detection, and improve prediction
of grain loss using the highest resolution vegetation health (VH)
method. The VIIRS-based VH will detect drought early, monitor
accurately at 0.5 km2 resolution, provide drought intensity, dur-
ation and predict agricultural loss 2 months ahead of crop har-
vest. Such early estimates will predict food security situation.
Examples in this article prove high accuracy of vegetation health
assessment, drought-triggered crop stress and the resulting grain
production loss. These applications provide 2–4 months of
advanced predictions of global food insecurity and early assess-
ments of food assistance for the countries in need.
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1. Introduction

We are living in the twenty-first century. We have reached a considerable progress in
industry, economy and finance. We have achieved great innovations in medicine;
improving human health and extending the lifespan. In spite of this progress, today,
more than 1 billion people, nearly a sixth of the world’s population, suffer from
chronic hunger and malnutrition due to a lack of food (FAO 2017). In addition,
nearly 800 million people were under-nourished (CIA 2017; USDA 2017). A serious
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concern is that world hunger has been increasing in recent years (FAO 2017; WEF
2017). The vast majority of the world’s hungry lives in developing countries (Gottlieb
and Joshi 2010; USDA 2017). Southern Asia also faces the greatest hunger burden
with about 280 million undernourished people. In sub-Saharan Africa, the rate of
undernourishment is around 23% (Ephraim et al. 2007; WEF 2017). Poor nutrition
causes nearly half the deaths in children under five, and one in four children suffer
stunted growth (CIA 2017; FAO 2017). Unfortunately, malnutrition, including under-
nutrition and micro-nutrition (nearly 2 billion people) are top contributors to global
disease. In addition to malnutrition, nearly 700 million people in 76 countries are
food insecure (USDA 2017).

One of the important reasons for undernourishment, malnutrition and hunger is
global and regional drought, which reduces agricultural production. In addition to
annual drought-related agricultural losses, long-term technology-increased global grain
production, the principal indicator of food security, are currently growing slower than
the population increase, especially in Africa (FAO 2017; USDA 2017). Future prospects
are not encouraging since it will require an increase in food production of nearly 70%
to feed 2 billion people more by the mid-twenty-first century (Gottlieb and Joshi 2010;
Drought 2016; Euronews 2017; FAO 2017). This situation is further complicated by cli-
mate warming, which is assumed to intensify droughts, increasing their area, strength,
duration and leading to a further reduction of agricultural production. In years, when
moderate-to-intensive drought covers more than 20% of the world’s main agricultural
areas, there is less food production than what the world needs for consumption. The
situation has already deteriorated in the twenty-first century, when in the first 17 years,
world grain production, was below consumption in almost half of the years (CIA 2017;
USDA 2017; WEF 2017). In 2003, 2004, 2006, 2011, 2012, 2013 and even 2017 (prelim-
inary estimates, USDA 2017) grain production was 3–6% below consumption (WB
2017). Moreover, in all of these years, drought was the major cause affecting food
security and world sustainability. Although drought cannot be prevented, instead, it can
be detected early and damages to agriculture could be predicted well in advance of har-
vest in order to providing on time food assistance to avoid hunger. Therefore, one of
the most important tasks for prediction of food insecurity is to detect drought early
and estimate agricultural production losses several months ahead of harvest. This is
currently possible with services from a new generation of operational polar-orbiting sat-
ellites (JPSS 2017).

In November 2017, a new generation of NOAA operational polar-orbiting satel-
lites, JPSS-1 (Joint Polar Satellite System), was successfully launched (November 17)
and reached the polar orbit i in the early 2018. On board the satellite, there is the
new Visible Infrared Imaging Radiometer Suite (VIIRS), the most advanced of its
class satellite sensor (JPSS 2017). This new NOAA system will improve advanced
high-resolution global drought detection, assessment of drought intensity, duration
and will provide advanced prediction of crop and pasture losses. These assessments
will provide a 2–3 months advanced notice of the world’s food security situation,
which provides several months lead time for providing food assistance. The JPSS-1
system, named currently NOAA-20 (JPSS 2017), will continue 37-year (since 1981)
operational services of NOAA afternoon polar-orbiting satellites for the next 5 years
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with considerably improved drought prediction and impacts assessments on agricul-
ture and food security. The launched system will be followed by JPSS-2, -3, and -4
(NOAA-21, -22, and -23), serving the globe for the next 2–3 decades (JPSS 2017).

The new JPSS generation of satellites with VIIRS instruments will be extremely
useful for more precise detection of drought start/end and duration, high-resolution
estimation of drought area and intensity, more accurate VH-based modeling agricul-
tural production and, what is the most important, prediction of agricultural losses up
to 4 months in advance of harvest completion. Such predictions would help to iden-
tify those developing countries suffering from food insecurity and needed food assist-
ance to avoid malnutrition and even hunger. Such lead-time of advanced agricultural
assessments, especially drought-related agricultural losses, would principally be suffi-
cient for an early prediction of food security and improving economic and social sus-
tainability. We used the Vegetation health tool, which estimates real-time vegetation
condition or health on a scale from very healthy (green, vigorous, etc.) to extremely
stressed (less green or even yellow, wilting or dead, etc.). The VH tool has been
applied successfully since it is based on three biophysical laws, providing universal
monitoring approach to different ecosystems, estimates a combination of moisture
and thermal condition of vegetation surface and verified against in situ data in nearly
30 countries.

This article describes the improved JPSS features (based on NOAA-20/VIIRS for
advanced drought detection, assessment of high-resolution drought intensity, duration
and, most importantly, before harvest drought-induced reduction of crop and pasture
production, advancing prediction of global food insecurity. Moreover, since weekly
VH data are currently available for the past 38 years (1981–2018, VH 2018) and the
new JPSS system will provide VH data until the mid of the current century, the VH
data will be extremely important for analysis of climate warming impacts on vegeta-
tion and the entire land surface change. Even now, having nearly four decades of VH
data, it is possible to investigate vegetation performance and assess if drought is
intensifying and expanding the area and duration, if drought-related agricultural
losses are increasing and deteriorating food security and other environmental events.

2. Drought

Drought is a typical phenomenon of the Earth’s climate (Kogan et al. 2015; Drought
2016). Drought occurs every year without warning, does not recognize borders, polit-
ical and economic differences. It has wide-ranging impacts, first not only on agricul-
ture but also on water resources, ecosystem health, energy, forestry, transportation,
recreation, food supply–demand and other resources and activities. Losses from
drought, especially in agriculture, are staggering. For example, in the U.S.A., a coun-
try with quite advanced agricultural technology, the average annual drought impact
on crop and pasture productivity is estimated at around $6 billion (Drought 2016;
Kogan et al. 2016; CIA 2017). In extreme drought years, such as 1988, the cost
jumped up to $60 billion (Kogan 1995; Wilhite 2000). World agriculture is suffering
from drought in many countries, leading to food security problems, especially in the
developing world. Since 2001, drought-induced losses in the 42 highest-ranking
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agricultural countries are estimated at around $932 billion (EM-DAT 2011). Between
1980 and 2008, drought affected 1.5 billion people globally (0.3 billion in India only)
and killed 0.5 billion (0.3 billion in Ethiopia (NCDC 2011)). Economic damages from
droughts in recent years were assessed at $13.7 billion in China and $6.0 billion in
Australia (Drought 2016). In developing countries, drought impact is much greater,
contributing severely to food shortages, famine, population displacement and even
mortality. In Africa, between 1981 and 2010, drought affected millions of people lead-
ing to 0.5 million deaths (Masih et al. 2014). In 2010, FAO estimated that 925 million
African people suffered from hunger; in 2012, 239 million people in sub-Sahara
Africa suffered from hunger and starvation and future projections of change to the
situation are not promising (Sasson 2012). The other consequence of a severe drought
is the spike in food prices, riots and migration of people in neighboring countries,
which occurred when thousands of Somalis had to flee to seek refuge in neighboring
Ethiopia and Kenya (Sasson 2012). In the United States, from nearly 200 weather and
climate disasters between 1980 and 2016, drought was the principal contributor to
the costs and was named as a ‘14 billion-dollar’ annual event in terms of incurred
losses (Drought 2016; NOAA 2017). More specifically, billion-dollar drought costs
and damages, by states, between 2011 and 2016, are shown in Table 1 (NOAA 2017).

Drought is the most damaging environmental event, effecting global agriculture
and leading to considerable losses of production, creating food insecurity. Between
2001 and 2016, nearly 20% of the world’s land was stricken by drought almost every
2 to 3 years and in some cases, that percentage was much higher (Kogan et al. 2015).
Drought affects the largest number of people on Earth and is a very costly disaster,
especially in developing countries of Africa and Asia (Drought 2016). Considerable
relief from drought to food security can be achieved if drought is detected in advance
of its start and if its area, duration and intensity are estimated more accurately and
ahead of time. What is the most important is to predict agricultural losses 1 to 2
months in advance of harvest. Drought detection and prediction of agricultural losses
based on weather station network is currently a challenging task since this network is
limited and sparsely distributed, especially in Africa, the continent with the most fre-
quent and strong droughts and food insecurity situation. Those droughts lead to

Table 1. U.S. Billion-dollar Droughts and Fires Disasters in 2011–2016 (NOAA2017).

Year Disaster
Cost
(bill $) Death (#) States affected Damages

2016 Drought and fires 2.0 21 Southeast &CA Agriculture Humans &
Agriculture

Drought 3.5 North & Southeast
2015 Drought 4.5 0 Ca, NV, OR, WA, ID, MT, UT, AZ, AL Agriculture Fires

Fires 3.0 12
2014 Drought 4.0 0 TX, OK, KS Agriculture
2013 Drought/heatwave 10.4 53 AZ, CA, CO, IA, ID, IL, KS, MI, MN,

MO, ND, NE, NM, NV, OK, OR, SD,
TX, UT, WA, WI, WY

Agriculture and Humans

2012 Drought/heatwave
fires

30.0 123 NV, ID, MT, WY, UT, CO, AZ, NM, TX,
ND, SD, NE, KS, OK, AK, MO, IA, MN,

Agriculture humans

1.7 8 IL, IN, GA, ID, WY, MT, CA, NV, OR, WA
2011 Drought/heatwave 12.0 95 TX, OK, NM, KS, LU, AZ Agriculture humans

fires 1.4 5
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malnourishment, hunger, population migration and death due to food security prob-
lem. One to two months advanced notice of drought and assessments of agricultural
losses from weather observations (mostly precipitation, temperatures and indices) is
also a challenging task. Therefore, during the last three-and-a-half decades, satellite
data were used to develop drought monitoring and impact assessment techniques.
Considerable progress was achieved when NOAA afternoon operational polar-orbit-
ing satellites were launched and used for global drought detection (start/end), estima-
tion of area, intensity, duration and agricultural losses prediction using the vegetation
health method (Kogan 1995; Kogan 2006, 2001; Kogan et al. 2013; Kogan et al. 2015;
Kogan et al. 2016; NOAA/NESDIS 2017).

3. Vegetation health

Drought and its impacts on vegetation is normally derived indirectly based on short-
ages of moisture in the soil or from a lack of rainfall or following an excessive tempera-
tures, their indices or other environmental weather-based drought characteristics.
However, it has been shown that drought can be also estimated directly from satellites
measuring indirectly the amount of chlorophyll and water content converted to vegeta-
tion health. In general, if vegetation is well-developed, green, vigorous and uniformly
covers an area, then vegetation has enough chlorophyll and water and is considered
healthy. Oppositely, if vegetation is not well-developed, not uniform, less vigorous, wilt-
ing and less green (or yellow), then vegetation is lacking water, chlorophyll, biomass,
etc. and is considered unhealthy. The last three-and-a-half decades of NOAA oper-
ational satellites in space, their sensors measured these physiological characteristics
through land surface radiances, converting them to vegetation health. Between 1981
and 2011, the NOAA operational afternoon polar-orbiting satellites with the Advanced
Very High Resolution Radiometer (AVHRR) sensor on board were estimating vegeta-
tion health for each 16 and 4 km2 (mid-resolution) land surface (Kogan 1995; Kogan
2006, 2001, 1997; Kogan et al. 2013; Kogan et al. 2016). From 2012, the new Visible
Infrared Imaging Radiometer Suite (VIIRS) on Suomi National Polar Orbiting
Partnership (S-NPP) afternoon operational polar-orbiting satellite continued the 4 km2

vegetation health assessments and also high-resolution (1 km2) vegetation health moni-
toring, drought detection and its impact assessment on agriculture (Kogan 2001, 2006;
Kogan et al. 2015, 2016). From 2018, the new J-1/VIIRS (currently, NOAA-20) gener-
ation of operational satellites (JPSS 2017) is producing the highest 0.5 km2 resolution,
data, considerably improving vegetation health monitoring, strongly advancing drought
detection, area and intensity assessment and prediction of agricultural losses. These
measurements will considerably improve food security assessment, contributing to pre-
venting population malnutrition and even hunger.

3.1. Vegetation health method

The Vegetation Health (VH) method (Kogan 1987, 1989) includes seven steps:
(1) Data collection in visible (VIS) and near infrared (NIR) reflectance and in infra-
red (IR) emission from land surface (including vegetation); (2) Pre- and post-launch
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radiance calibration, calculation of land surface reflectance and radiative temperature;
(3) Derivation of NDVI from VIS/NIR and brightness temperature (BT) from IR; (4)
Complete elimination of high- and low-frequency noise from NDVI & BT weekly
time series; (5) Approximation of no-noise NDVI and BT annual cycle; (6)
Derivation of NDVI and BT climatology (NDVImax, NDVImin, BTmax and BTmin)
based on the three biophysical laws; and (7) Derivation of Vegetation Health indices.

The principles of vegetation health estimation directly from satellite measurements
were based on the properties of green vegetation to reflect sunlight and emit absorbed
solar radiation following vegetation productivity. Since drought reduces chlorophyll
and water content in vegetation, NOAA satellite sensors measure the corresponding
reflected and emitted radiation, producing unhealthy vegetation indicator. In no-
drought years, satellite-based indicators estimate vegetation as healthy. From satellite-
measured reflected radiation (VIS and NIR) the Normalized Difference Vegetation
Index (NDVI) is derived. Emitted radiation in the IR part of solar spectrum is used
to derive Brightness temperature (BT). Following physiological properties of vegeta-
tion, NDVI quantifies an intensity of photosynthetic activity, water content and
absorbed energy, characterizing vegetation greenness, vigor, cover, height, phenology,
ecosystem type, which are strongly related to vegetation health (Monteith 1972,
Kogan 1995, 1997). The BT quantifies thermal conditions of vegetation, since extreme
temperature could decimate vegetation (sometimes in the presence of water in the
soil) in a matter of days deteriorating vegetation health (Kogan 2001, 2006;
Vincent 2017).

Since NDVI and BT quantify both weather and climate components of the envir-
onment in vegetation health signal, in order to estimate weather-induced drought, the
climate component was removed from these indices following the principles of three
environmental laws: Leibig’s Law-of-minimum, Shefield’s Law-of-tolerance and the
Principle of Carrying Capacity. In general, these laws require a derivation and set up
for each land pixel and unit of time the multi-year environmental limits that environ-
mental resources or habitat can support and inside which weather impact on vegeta-
tion health is estimated (Shelford 1931; Ehrlich and Holdren 1971; Kogan 1995; Hui
2006; LOM 2017). These limits for NDVI and BT were set up to characterize multi-
year minimum (MIN) and maximum (MAX) of environmental resources or climat-
ology. A very simple principle was established: the NDVImax from multi-year data
indicates extremely healthy vegetation, estimated numerically as 100; the NDVImin in
multi-year data indicate very unhealthy vegetation, estimated at zero. The BT scale is
opposite since lower temperatures specify healthy vegetation (with values 100) and
high temperatures specify unhealthy vegetation (with value 0). Vegetation health is an
indicator to assess the health of vegetation on a scale from very healthy to completely
unhealthy and with a number of intermediate conditions such as normal, slightly
above or below normal and stressed.

As a result, NDVI-based Vegetation Condition Index (VCI), BT-based Temperature
Condition Index (TCI) and VCI-TCI combined Vegetation Health Index (VHI) were
approximated as:

VCI ¼ 100 � NDVI � NDVIminð Þ= NDVImax � NDVIminð Þ (1)
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TCI ¼ 100 � BTmax � BTð Þ= BTmax � BTminð Þ (2)

VHI ¼ a � VCI þ 1� að Þ � TCI (3),

where NDVI, NDVImax and NDVImin (BT, BTmax and BTtmin) are no noise weekly
NDVI & BT and their 1981–2016 absolute maximum and minimum (climatology),
respectively; a is a coefficient quantifying a share of VCI and TCI contribution in the
VHI. Since this share is generally not known for specific crop and location, it was
assumed that VCI and TCI contributions are equal (a¼ 0.5).

These three indices were set to assess moisture-based vegetation health from VCI,
thermal-based vegetation health from TCI and their combine (moisture-thermal) con-
tribution from VHI. All three index values change from zero, extreme stress, to 100 –
very healthy (Kogan 1995, 1997, 2001). A simple principle was established: if vegeta-
tion is very green and vigorous, its satellite-derived numerical conditions in the form
of indices (moisture, thermal and combined) are set up as very healthy (100). If vege-
tation is much less green, not vigorous or even wilting, vegetation state is set up as
very unhealthy or extremely stressed (0). Between these two extreme conditions (very
healthy and extremely stresses), vegetation health is estimated continuously providing
different levels of vegetation health, such as, for stressed level: light, moderate, severe,
extreme, exceptional and for healthy levels: normal, moderate, healthy, etc. Such
assessment principles are applied to any stage of vegetation development and to any
ecosystem and climate. A vegetation health approach was introduced in mid-1980
and was applied globally beginning in 1981 through the present using the NOAA
operational afternoon polar-orbiting satellite observations. Satellite-based numerical
vegetation health became quite popular and in the past 20 years, was applied to a
number of scientific satellites’ records, such as MODIS, LANDSAT, SPOT and others
(Saleous 2005; FAO 2017; NIDIS 2017).

4. Global/regional drought impacts on food security

During the operation period of NOAA afternoon polar-orbiting satellites, an extreme
global drought-related vegetation stress was monitored by 4 km2 resolution VHI
(moisture-thermal conditions) data. This stress area is shown in Figure 1 for 2012 and
2017 (NOAA/NESDIS 2017). In 2012, total drought-triggered vegetation stressed area
(VHI <40) occupied 28% of the world’s vegetated land, including 9% areas with
extreme vegetation stress, caused by exceptional drought. Compared to 2012, in 2017
total drought-induced vegetation stress (mostly lights) area occupied 17% of land with
less than 1% area under strong vegetation stress. Following the results of 2012 drought
impacts, global grain production was 4% below the consumption (USDA 2017; WB
2017). Among grain-producing countries, the most drought affected (red color) were
the U.S.A. (contribute 15.8% to global grain production), Kazakhstan (0.8%) and east-
ern Brazil, mid-level drought-based vegetation stress (light red–dark yellow) was in
most of Ukraine (2.2%), in southern Russia and southern Europe. Most African coun-
tries, except for northern sub-Sahara, experienced moderate-to-strong drought-
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triggered vegetation stress, which affected food security (WB 2017). Grain production
was reduced, especially in Tanzania, Kenya, Ethiopia, Somalia, Zaire Angola,
Zimbabwe, Morocco and Algeria, requiring food assistance (Donley 2016; USDA/FAS
2017). In Asia, mid-level vegetation stress (yellow) in 2012 was on most of India
(10.5%), in southern China, and southeastern Australia. India has had problems with
moderate food security in 2012 (Figure 1).

Although the summer of 2017 was less affected by drought-related vegetation stress
(Figure 1), some periods in 2017 were characterized by extreme vegetation stress due to
a devastating drought, which affected the food security situation in Europe. An excep-
tional drought (in VH nomenclature) is generally rare, especially if they affect the econ-
omy of an entire country. However, such drought occurs from time-to-time and if
damages are extreme and may affect the entire country, drought attract exceeding atten-
tion and are required an advanced estimation of the impact. Such unusual droughts
affected western European countries, especially Portugal and Spain in fall of 2017. In
these two countries, the 2017 drought left rivers nearly dry, sparked deadly wildfires and
devastated crops and pastures (Vincent 2017). According to meteorologists (IPMA
2017), 2017 was classified as a very unusual drought year, since 94% of Portugal has
endured ‘extreme’ (mostly thermal) drought and less than 50% of rainfall plus unusually
excessive temperatures in Spain created severe drought conditions. Very devastating
drought consequences were cited in the world news (Euronews 2017; The Guardian
2017). A few the most unusual drought-related environmental damages were the follow-
ing: Douro River, which is one of the symbols of the Iberian Peninsula, was 60% dry by

Figure 1. Vegetation Health Index in summer (week 28, end of July) 2012 and 2017
(NOAA/NESDIS2017).
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November 2017; in Portugal, 28 of the country’s water reservoirs in October were at less
than 40% of their storage capacity; shortage of water was so severe that one hundred
fire trucks began transporting water from one dam in northern Portugal to another that
was running dry; trucks delivered water to Viseu, a city of around 100,000 residents
(Vincent 2017). Severe water deficiency in the second half of 2017 was aggravated by
excessive fall temperatures in many places of Iberian Peninsula, Italy and France. Air
temperatures hit and exceeded 40 �C, which are the most sustained heatwave in Portugal
since 2003 (IPMA 2017; The Guardian 2017).

VIIRS-assessed VH-based thermal stress supports these results. Figure 2 demon-
strates mid-day TCI-derived exceptional thermal stress in four countries. European
news were focused on these areas, especially on Portugal and Spain. Such critically
extreme temperature and water conditions, in addition to problems for population
living, created unusual economic situation to grow enough food (Euronews 2017).
Grains, olives and grapes were suffered from thermal and water stress (USDA/FAS
2017). About 1.38 million hectares of grains, sunflowers, grapes and olive trees have
been affected by drought in Spain at the end of October and especially, in early
November 2017 (IPMA 2017). The 2017 water and thermal stressed situation wors-
ened the drought impacts on economy since the current year drought consequences
were intensified through continuation of the 2016 dry conditions, which started in the
second half of the year (USDA/FAS 2017). Following TCI estimates, the 2017 grain
production was predicted to be much below historical average levels in Portugal and
Spain. Their predictions indicate that, compared to the last year, grain harvest is
expected to plunge up to 70% and olives harvest is expected to drop in half, com-
pared to regular production (Euronews 2017; Vincent 2017). In addition to crops and
trees devastation, grass on the pastures was very scarce and farmers had to buy much
fodder for their cattle to survive. The strong food demands by the domestic livestock
industry, along with limited pasture’s grass availability will contribute to an increase
in the countries’ grain import needs (Vincent 2017; The Guardian 2017). Following a
reduction in 2017 production of grape, Spain was going to produce much less wine.
This situation would be worsened since drought affected not only in Spain but also
reduced grape production in Italy and France. These two countries produce nearly
50% of world wine and due to 2017 thermal stress (Figure 2) the entire world would
be facing a shortage of wine. Disastrous grapes harvest would lead to much higher
wine prices (Euronews 2017). Besides production losses, severe thermals stress trig-
gered a few fires, which killed 109 people in Portugal (Euronews 2017; Vincent 2017).
We are bringing so much details of media coverage and some weather information
on drought intensity and impacts in order to show that satellite-based VH assess-
ments are well in line with in situ measurement and economic assessments.

As has been mentioned, Africa was less affected by drought-induced vegetation
stress in 2017 compared to 2012 (Figure 1). However, more careful analysis of the
new generation of satellite-based vegetation health, especially VH-based drought area,
intensity and duration opens more interesting features of drought contribution to
food security in 2017. First, it is important to mention that grain, specifically wheat,
is the most important commodity for food in Africa (Donley 2016). In general,
annual grain (including wheat) produced in Africa is not sufficient for consumption
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due to tremendous population growth. Unfortunately, no growth in long-term
African grain production and fast widening the gap between grain production and
consumption (Donley 2016). Therefore, African countries need to import grain.
Africa accounts for 27% of the global wheat imports and in the twenty-first century
the imports grew fast, at a compound annual growth rate of 3.8% (Donley 2016).
Countries, which cannot afford the imports economically, require food assistance,
especially in the years of drought-related grain losses. Following these considerations,
it is important to produce more detailed analysis of drought start/end, area, intensity
duration and finally predict the impacts of these characteristics on grain losses during
even slightly unhealthy vegetation season.

Such information is presented in Figure 3, showing 2014–2017 drought characteris-
tics in the main grain areas of eastern and western Africa. These countries are the
main contributors to the regional wheat production (Donley 2016). Although 2017 in
east and west Africa showed mostly light-to-moderate drought-related vegetation stress
with only small areas of drought stronger than moderate (Figure 1), VHI (moisture-
thermal condition) in all four countries showed that between 50 and 90% of wheat
producing regions were affected by moderate-to-exceptional vegetation stress and
25–50% by extreme-to-exceptional stress (Figure 3). Moreover, drought was very long:
a lighter intensity drought continued for 6–8months and a stronger intensity drought
continued for 2–4months. Following Figure 3, the largest area and the strongest
drought-related vegetation stress in 2017 was in the eastern Africa, especially in
Kenya. More interesting is that the 2017 drought in both Kenya and Somalia was a
continuation of 2016 vegetation stress, although slightly a lighter intensity and on a
smaller area. These two-year droughts produced double shortfalls of grain production
(Donley 2016). The year 2015 was less affected by droughts in east African countries
and the losses of grain production in some regions were minimal. The 2017 drought
in the western Africa’s Nigeria and Ghana was less intensive, has smaller area than in
east Africa and affected mostly the second half of the year. However, the 2017 drought
in Nigeria and Ghana continued the droughts of 2016 and also 2015, especially in
Ghana. The shortfall of grain production in the shown western African countries was
estimated in all 3 years and were the largest in 2015 and the smallest in 2017.

The new generation of NOAA operational satellite system, launched at the end of 2017
will improve considerably VH-based drought monitoring. The most important

Figure 2. Exceptional VIIRS/TCI-based thermal stress in western Europe at the end of October and
early November 2017 (NOAA/NESDIS2017).
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improvement would be production of 0.5 km2 data, which will provide the highest reso-
lution regularly derived drought impact on agricultural losses and food security prediction
for the next two decades. The example below shows how important to have such high-
resolution assessments in California. Among U.S.A.’s western states, California was the
most severely drought affected, in 2012–2017, especially during 2013–2015, when an area
of the strongest vegetation stress reached 70% (Howitt et al. 2015). This long drought had
strong impacts on California’s environment, economy and society. The total drought
impact on California economy was estimated at $2.74 billion (Howitt et al. 2015). The
strongest drought impact was on agriculture and water resources. California’s agriculture
provides nearly 90% of U.S.A.’s berries, nuts, some fruits and vegetables. Since California’s
agriculture is widely irrigated, using 52% total water supply in dry year (Howitt et al.
2015), several-year drought greatly affected agriculture, leading to nearly 3% losses in crop
revenue and increasing the cost of extra water pumping by 75% (Howitt et al. 2015). In
addition, water shortages increased the amount of drought-related idle land by 45%
(540,000 acres by 2015) and 21,000 total job losses. Besides, agricultural losses and water
depletion, the California drought was one of the causes for intense wildfires with larger
than before area and property damages.

Figure 4 compares 0.5 by 0.5 km resolution S-NPP/VIIRS-based Vegetation health
with 4.0 by 4.0 km VH data and with 1500 by 1500 km drought assessment from US
Drought Monitor (USDM). USDM is considered as the main US weekly drought prod-
uct (USDM 2017). USDM-based drought is derived from weather data and indices
(Palmer Drought Index, Standardized Precipitation Index, etc.). Figure 4(c) shows
images of weather-based drought estimates in California, which has 275 weather sta-
tions. Although the number of weather stations is large, considering California area of
423,970 km2 and assuming uniform distribution of weather stations over California, one
weather station characterizes environmental conditions for an area of 1542 by 1542 km,
which is a very large area to have efficient weather-based drought monitoring.
Therefore, drought area and intensity estimated by USDM has extremely low resolution,
since at the background of droughts in all indicated years, especially extreme drought in
2015, 4.0 by 4.0 km resolution VH assessments (Figure 4(b)) showed that, in addition to
droughts, triggering vegetation stress (red pixels), some pixels in California indicated

Figure 3. Vegetation health-based drought dynamics (start/end, area intensity and duration) during
2014–2017 in countries of east and western Africa (NOAA/NESDIS2017).
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healthy vegetation conditions (blue and green pixels), due to irrigation of some lands or
local weather events. When VH resolution was further improved with 0.5 by 0.5 km data
(Figure 4(a)), the 2015–2017 images have clearly showed California’s Central Valley
(CV; Kogan et al. 2017), not shown in Figure 4(b) and (c). California’s CV principle
crops, berries, nuts, etc. are irrigated. Following irrigation and local rainfall events, some
pixels in the CV, indicate healthy vegetation (blue-green color), and areas without irriga-
tion indicates vegetation stress (red-yellow color).

Since some CV grown crops are heavily irrigated, the advantages of the 0.5 by 0.5 km
resolution data are in their ability to estimate crop/tree conditions and the need for irri-
gation on the area comparable to the size of approximately 200–500 acres, or
0.5–2.0 km2. Following Figure 4(a), some irrigated areas in the Central Valley (CV) had
healthy vegetation (VH >60, blue VH color) during the shown 3-year drought, which
indicates that the areas are irrigated, while less or no irrigated areas indicated severe
vegetation stress (VH <30, dark red color). In 2017, the areas with severe vegetation
stress in the CV was reduced considerably especially in the mid-Valley. However, south-
eastern California (outside of the CV) remained under severe vegetation stress resulted
in the stronger fire disaster in fall 2017 (Howitt et al. 2015; Kogan et al. 2017).

Finally, it is important to emphasize that VH data are used for modeling and prediction
of crop yield (Kogan et al. 2015, 2016). Figure 5(a) and (b) demonstrates modeling
Australian hard wheat. Australia is a major supplier of wheat to the international market
being number five among the largest world grain producers (U.S.A., Russia, European
Union and Canada) and exporting annually 4–8% of global grain in trade since 1980s. The
lowest Australia wheat export (4%) occurs in years of intensive drought. Of the nearly 800
million hectares of Australia land, only 10% is suitable for crops and pastures. The rest are

Figure 4. California’s environmental conditions in July (week 27) 2015–2017 estimated from VIIRS-
based Vegetation health (a) 0.5 by 0.5 km and (b) 4.0 by 4.0 km resolution, (c) drought from US
Drought Monitor (USDM) at approximately 1500 by 1500 km resolution.
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occupied by desert and dry grassland. Following Australian dry climate, wheat is completely
dependent on precipitation and temperature. Therefore, high-resolution VH data, estimat-
ing moisture and thermal conditions, were tested in Australia for modeling wheat yield.

For that purpose, Australia’s area-average weekly VHI (moisture-thermal condi-
tions) index during 1981–2014 was calculated for the major growing area of wheat,
which is in the eastern edge of the continent. The 1981–2014 Australian hard wheat
yield has experienced technology-improved upward trend. This trend was approxi-
mated statistically as a function of year. Weather-related fluctuations of wheat yield
around the trend were approximated as a deviation ratio of actual to trend-estimated
yield (dY). For yield modeling, the annual dYs were first correlated with weekly VHI
data. Figure 5(a) shows dynamics of correlation coefficients of dY versus VHI. The
correlation analysis indicates that in the early period of wheat season, which is pre-
planting, planting and emergence (April–June, weeks 16–25), the dY-VHI correlation
is low (0.25–0.35). It increases sharply during the green biomass accumulation
(July–August, weeks 26–32), reaching maximum (0.71–0.76) in September-early
October, weeks 33–38), during the wheat’s critical period (approximately, 2 weeks
before and after heading). During this period, good water supply and cooler tempera-
tures stimulate above trend wheat yield. Following Figure 5(a), high and positive dY-
VHI correlation during the critical period indicates that when VHI <40, indicating
moisture/thermal stress (lack of water and/or hotter weather), dY is below trend.
Oppositely, if VHI >60 (favorable conditions or weather is wet and cool) dY is above
trend. After September–October the dY-VHI correlation is gradually declining. Since
the model estimates Australian wheat yield in August, the prediction is advancing
harvest for nearly 2 months. Figure 5(b) provides independent validation of the
model, indicating that the predictions are quite accurate.

Figure 5. Modeling mean Australia wheat yield (1981–2014) and mean Kansas (U.S.A.) winter wheat
yield (1985–2005) anomaly (dY, deviation from technological trend): (a) and (c) correlation of dY with
weekly VHI, (b) and (d) correlation of independently modelled dY with VHI for week 38 in Australia
and weeks 15–18 in Kansas (U.S.A.). Note: Area mean VHI data were calculated from 4 km resolution
pixels in Australia and 16 km resolution pixels in Kansas (U.S.A.); R – correlation coefficient.
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A very interesting question was raised by one of the reviewers: if VHI-based yield
predictability improves with a higher pixel resolution (1 or 2 km2)? Unfortunately, we
cannot verify that on high-resolution data since 1–2 km2 data are currently limited
(2012–2017) for reliable yield modeling. However, comparing 16 km VHI-based win-
ter wheat modeling in Kansas, U.S.A. (Kogan et al. 2011; Figure 5(c) and (d)) with
4 km wheat modeling in Australia showed a similar strong dY-VHI correlation for
Australia’s conditions, estimated from 4 km pixels (R¼ 0.791) and for Kansas esti-
mated from 16 km pixels (R¼ 0.801). In addition, Figure 5 also indicates that in both
locations dY-VHI correlation dynamics has bell-shape form: early in the season when
wheat is in initial growth stage correlation is low, with season progress the correlation
is increasing very fast reaching maximum by the time of crop going through the
reproductive stage and fast decreasing by the crops’ harvest. More interesting, that
for Australia wheat, planted early in the year, the highest correlation coincides with
reproductive stage between August and September while in Kansas, winter wheat,
planted in fall of previous year, has the highest correlation in March–April, when it is
going through reproductive stage.

Conclusion

The presented examples with high-resolution VIIRS measurements have shown that
VH data estimated accurately vegetation health, especially drought-triggered stress
portion of its scale. In 2012, total VH-estimated (VHI <40) drought-affected vegeta-
tion stressed area was the largest in the past 6 years, occupying 28% of the world’s
vegetated land (9% area with extreme vegetation stress). Following this drought, glo-
bal grain production was 4% below the consumption. Even during much smaller area
and relatively a milder global vegetation stress, the 2017 vegetation health predicted
problems with food security in west and east sub-Sahara Africa, where large areas in
a few countries were affected by drought two years in a row (2016 and 2017). VIIRS
assessments at 0.5 km2 are extremely important for monitoring drought impacts on
irrigated agriculture in order to predict irrigation time and amount of water needed,
especially in case of such unusual multi-year (2012–2017) drought in California or
very extreme thermal stress in fall 2017 in the western Europe. The new JPSS gener-
ation of satellites with VIIRS instrument will be extremely useful for VH-based mod-
eling agricultural production, its prediction in advance of harvest in order to identify
countries with food insecurity.

In the twenty-first century, around one-quarter of the world population has not
had enough food for normal living, nearly 1 billion people became hungry, some
migrated and some died every year. Moreover, the world hunger is currently on the
rise and food security is the most important concerns of the society. One of the
strongest contributors to food insecurity is drought, which reduces agricultural pro-
duction, specifically grain, the principal staple food, affecting global population, espe-
cially in the developing countries. In November 2017, a new generation NOAA
operational polar-orbiting satellite, JPSS-1 was successfully launched with the VIIRS
sensor on board, which observations will improve considerably drought detection and
assessment of its area, intensity, duration and impacts. The new method of estimation
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of vegetation health (VH) from JPSS/VIIRS will considerably improve advanced
drought detection, monitoring and, what is the most important, prediction of agricul-
tural losses with nearly 2 months ahead of grain crops harvest. Such an advanced
agricultural assessment would permit to predict food security situation early enough
in order to provide food assistance and to avoid hunger.
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