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ABSTRACT
We present an assimilation system for atmospheric carbon dioxide (CO

2
) using a Global Eulerian–Lagrangian 

Coupled Atmospheric model (GELCA), and demonstrate its capability to capture the observed atmospheric CO
2
 

mixing ratios and to estimate CO
2
 fluxes. With the efficient data handling scheme in GELCA, our system assimilates 

non-smoothed CO
2
 data from observational data products such as the Observation Package (ObsPack) data products 

as constraints on surface fluxes. We conducted sensitivity tests to examine the impact of the site selections and the 
prior uncertainty settings of observation on the inversion results. For these sensitivity tests, we made five different site/
data selections from the ObsPack product. In all cases, the time series of the global net CO

2
 flux to the atmosphere 

stayed close to values calculated from the growth rate of the observed global mean atmospheric CO
2
 mixing ratio. 

At regional scales, estimated seasonal CO
2
 fluxes were altered, depending on the CO

2
 data selected for assimilation. 

Uncertainty reductions were determined at the regional scale and compared among cases. As measures of the model–
data mismatch, we used the model–data bias, root-mean-square error, and the linear correlation. For most observation 
sites, the model–data mismatch was reasonably small. Regarding regional flux estimates, tropical Asia was one of the 
regions that showed a significant impact from the observation network settings. We found that the surface fluxes in 
tropical Asia were the most sensitive to the use of aircraft measurements over the Pacific, and the seasonal cycle agreed 
better with the results of bottom-up studies when the aircraft measurements were assimilated. These results confirm 
the importance of these aircraft observations, especially for constraining surface fluxes in the tropics.

Keywords: carbon cycle, top-down approach, flux estimation, carbon dioxide, inversion, coupled model, tropical Asia

1.  Introduction

Carbon dioxide (CO
2
) is a major greenhouse gas and the most 

important contributor to anthropogenic climate change. Be-
fore the industrial revolution, the atmospheric CO

2
 exchange 

with natural carbon reservoirs (land and ocean) was largely 
in balance, in the absence of human influences. However, the 
combustion of fossil fuels (coal, natural gas and oil), as well as 
certain industrial processes and land-use changes, has consider-
ably increased since the pre-industrial era. The current level of 
CO

2
 in the atmosphere has increased by nearly 40% compared 

to the level in the pre-industrial era (Conway and Tans, 2014). 
Currently, about half of the extra CO

2
 that modern human  
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spatial and temporal CO
2
 variability in the vicinity of variable 

sources and sinks is quite challenging. Global Eulerian mod-
els with high spatial resolution have a high computational 
cost. One way of obtaining higher resolution flux estimates 
within a region of interest is to use a ‘zoomed’ or ‘nested’ 
atmospheric transport model (Peters et al., 2005; Peylin  
et al., 2005). The idea of coupling two different types of 
models for global and regional modelling for inversion was 
introduced by Rodenbeck et al. (2009), and Trusilova et al. 
(2010) implemented this idea as a coupled system consist-
ing of TM3, a global Eulerian atmospheric transport model 
and the Stochastic Time-Inverted Lagrangian Transport 
(STILT) regional Lagrangian model. Rigby et al. (2011) 
implemented a global inverse model with zoom over several 
regions resolved with a regional Lagrangian transport model 
NAME. Lagrangian particle dispersion models (LPDMs) 
are an effective tool for simulating observations at high spa-
tial and temporal resolutions (Lin, 2012). Lagrangian mod-
els have minimal numerical diffusion, which is inherent in 
Eulerian models. LPDMs have been coupled with numerical 
weather prediction (NWP) models and used extensively in 
air-pollution dispersion modelling (Uliasz, 1993). Recently, 
coupled LPDM/NWP models, such as the coupled Weather 
Research and Forecasting-Stochastic Time-Inverted Lagran-
gian Transport (WRF-STILT) model, have been used for a 
wide range of applications, including surface flux estimates 
by carbon cycle studies (Gerbig et al., 2003; Gourdji et al., 
2010; Nehrkorn et al., 2010; Pillai et al., 2011).

Ganshin et al. (2012) developed the Global Eulerian–
Lagrangian Coupled Atmospheric model (GELCA) based on a 
framework introduced by Koyama et al. (2011). GELCA com-
bines two transport models: The National Institute for Envi-
ronmental Studies-Transport Model (NIES-TM) version 8.1i 
(Maksyutov et al., 2008; Belikov et al., 2013), a Eulerian global 
transport model, is coupled with FLEXPART version 8.0 (Stohl 
et al., 2005), a LPDM. The global background mixing ratio 
field generated by NIES-TM is used as time-variant boundary 
conditions for FLEXPART, which performs backward simula-
tions from each receptor point (observation location). GELCA 
has demonstrated better performance in resolving short-times-
cale variations compared with NIES-TM only (Koyama et al., 
2011; Ganshin et al., 2012).

In this paper, we introduce a global CO
2
 inverse system 

using GELCA and we evaluate the performance of the GELCA 
inverse modelling system in estimating decadal global monthly 
CO

2
 flux distributions. As constraining observation data, we 

used an ObsPack data product, which includes actual data 
(whereas GLOBALVIEW contains only processed data), to take 
full advantage of the coupled modelling approach, which can 
effectively make use of measurements reflecting CO

2
 exchange 

along a local path or footprint as well as measurements rep-
resenting hemispheric-scale background air. We examine the  

activities have released into the atmosphere has been absorbed 
by the land biosphere and oceans (Ciais et al., 2010a). Although 
global land and ocean carbon sinks increase with rising atmos-
pheric CO

2
, the Intergovernmental Panel on Climate Change 

Fifth Assessment Report stated with high confidence that glob-
al warming will reduce the sinks and partially counterbalance 
the equilibrium. It is thus urgent to understand the current status 
and trends of CO

2
 exchange between land, ocean, and atmos-

phere so that the potential impacts of ongoing global climate 
change on the carbon cycle can be assessed.

Inverse modelling is one approach to quantifying the spa-
tiotemporal distribution of sources and sinks at the Earth’s 
surface; this approach starts from a set of atmospheric mixing 
ratio observations by using an atmospheric transport model and 
sophisticated statistical inversion schemes (Ciais et al., 2010b). 
Global Eulerian models have been used extensively for global 
CO

2
 inversion (e.g. Gurney et al. (2004) and references therein). 

Initially, Eulerian models with low spatial resolution (starting 
from 10° × 10° in the 1980s) were able to reproduce the sea-
sonal cycle of global atmospheric CO

2
 mixing ratios reasonably 

well. At that time, observational network was much less abun-
dant and most observations were made at weekly to monthly 
intervals. In 1996, the GLOBALVIEW-CO

2
 data product was 

provided by the US National Oceanic and Atmospheric Admin-
istration (NOAA) Earth System Research Laboratory (ESRL) 
(http://www.esrl.noaa.gov/gmd/ccgg/globalview/). This data 
product contains extended records of CO

2
 with a regular tem-

poral distribution, derived from high-precision atmospheric 
measurements such as those from the World Data Centre for 
Greenhouse Gases (http://ds.data.jma.go.jp/gmd/wdcgg/intro-
duction.html) of the World Meteorological Organization Global 
Atmospheric Watch program and the Carbon Dioxide Informa-
tion and Analysis Center (CDIAC; http://cdiac.esd.ornl.gov). 
The observational records in GLOBALVIEW products are free 
of temporal gaps and have been extensively used by many car-
bon cycle models. Recently, spatial observational coverage has 
been expanding as more vertical profiles and better horizontal 
coverage become available from aircraft and satellite measure-
ments, and measurement frequency has been getting higher as 
more continuous measurements are being made at surface sta-
tions, including tower sites (Bruhwiler et al., 2011; Saeki et al., 
2013; Houweling et al., 2015). Models have been developed that 
are able to handle the higher frequency but irregular data-sets, 
and such models have started to use actual data for inversion 
(e.g. Rodenbeck et al., 2003; Chevallier et al., 2010; Chevallier 
et al., 2011). NOAA ESRL released a new set of observation 
data products in 2012 as a successor to GLOBALVIEW, called 
Observation Package (ObsPack) data products (Masarie et al., 
2014).

To derive regional surface flux information, high- 
frequency observations that represent hourly to synoptic var-
iations are particularly useful. Nevertheless, simulating fine 

http://www.esrl.noaa.gov/gmd/ccgg/globalview/
http://ds.data.jma.go.jp/gmd/wdcgg/introduction.html
http://ds.data.jma.go.jp/gmd/wdcgg/introduction.html
http://cdiac.esd.ornl.gov
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sensitivity of the inverse system to the data selection by com-
paring inversion results among five different subsets of the 
ObsPack data product.

2.  GELCA inverse modelling system

2.1.  GELCA coupled atmospheric model

A schematic diagram of the GELCA inverse modelling frame-
work is shown in Fig. 1. We implemented the coupling at 
temporal boundaries instead of spatial boundaries. Two-day 
backward-transported particles modelled by FLEXPART were 
combined at the end points with the background CO

2
 levels 

2 days prior to the observations simulated by NIES-TM. The 
mixing ratio C

(

x
r
, t

r

)

 at the receptor location xr at time tr can 
be expressed as the sum of near-site contributions calculated 
by FLEXPART and the background contributions calculated by 
NIES-TM.
 

(1)
C
(

x
r
, t

r

)

= C
near_site

(

x
r
, 0 ≤ t

r
− t ≤ 2 days

)

+ C
background

(

x
r
, t

r
− 2 days

)

.

FLEXPART simulates the backward transport of 10,000 
particles released from each receptor point (observation 
location). C

near_site

(

x
r
, 0 ≤ t

r
− t ≤ 2 days

)

 is calculated by 
integrating the sensitivity of CO

2
 mixing ratio to the surface 

fluxes (footprint) along 2-day trajectory paths of all particles. 
C

background

(

x
r
, t

r
− 2 days

)

 is the average of the CO
2
 mixing 

ratios at the time of coupling simulated by NIES-TM, weighted 
by the number of the end points of the back-trajectories con-
tained in each model grid cell. Detailed description about the 
Eulerian–Lagrangian coupling is given in Ganshin et al. (2012).

The duration of the backward calculations was set to two days 
to be consistent with the timescale of particles leaving the mixed 
layer (Gloor et al., 2001). Note that coupling with a Lagrangian 
model might not result in a significant improvement, compared 
with use of a pure Eulerian model, for remote sites, because 
numerical diffusion has a significant impact on the simulated 
mixing ratios at the receptor only if there are inhomogeneous 
sources or sinks near (less than about two days upwind of) the 
receptor. Supplementary Figure 1 shows the examples of foot-
prints in winter and summer for one of the observational data-sets 
used in this study, from which we point out the following features. 
Firstly, the distribution of observation sites mostly determines 
the footprint coverage, making North America and Europe fairly 

NIES-TM FLEXPART

Backward in time for 2 days
2.5°x2.5°, 32 layers

particles are released from site

Cbackground(xr,tr-2days) Cnear_site(xr,0< tr-t <2days) = C(xr, tr)+

Fossil Fuel
Biosphere
Ocean
Biomass Burning

Emissions Footprints

×

_  _

Fig. 1. Schematic diagram of GELCA inverse modelling framework.

http://dx.doi.org/10.1080/16000889.2017.1291158
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resolution of 1.25°  ×  1.25°, 40 hybrid sigma-pressure vertical 
model levels, and a temporal resolution of 6 h. Planetary bound-
ary layer height data were obtained from the European Centre for 
Medium-Range Weather Forecasts Interim Reanalysis data-set 
(Dee et al., 2011).

2.2.  Inversion scheme

For long-lived trace gases such as CO
2
, the assumption that 

atmospheric mixing ratios respond linearly to changes in emis-
sions holds well. Under the assumption of linearity, the rela-
tionship between a vector of observed values (z) and that of 
sources and sinks (s) can be expressed in matrix form as
 

(2)z = Hs + v,

well covered compared to other regions. Secondly, the footprint 
coverage varies significantly with the wind as well. In general, 
the coverage widens in winter compared to summer due to the 
stronger winds during winter in middle and high latitudes. The 
wind direction is important as well. For example, in East Asia, 
in winter, the wind blows dominantly from the Siberian High 
towards the Pacific Ocean, whereas it blows dominantly from the 
Pacific High towards the continent in summer. Since most obser-
vation sites are located around the east side of the continent, more 
surface flux signal can be captured from the continental East Asia 
in winter than in summer (Supplementary Figure 1).

The meteorological fields driving both models were taken from 
the Japan Meteorological Agency Climate Data Assimilation  
System (Onogi et al., 2007), which has a regular horizontal  

Fig. 2. Illustration of the inversion process employed in this study. The t indicates the time step on monthly basis. The modelled CO
2
 concentrations 

z
mod

 are sum of the background concentrations z
b
 and the presubtracted concentrations z

p
 calculated by GELCA. In each inversion cycle, the modelled 

concentrations are compared to observations z
ob

 and the state vector s is optimized within a 3-month window. Optimized fluxes are incorporated into 
the background concentration (z′

b
) before calculating for the next time step. The number of asterisks in the upper right of s shows how many times 

a set of monthly fluxes has been optimized previously from past cycles. The prime in the upper right of z
b
 means that the z

b
 has been updated. The 

dashed arrows mean monthly calculations by GELCA.

http://dx.doi.org/10.1080/16000889.2017.1291158
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where the Kalman gain matrix is 

In a batch mode inversion, all non-observed parameters are 
estimated using all available observations simultaneously 
at each solution step. When the number of observations and 
source regions increases, the matrix of basis functions H 
becomes very large, and the computational cost becomes very 
large. To avoid this large computational cost, we employed the 
fixed-lag Kalman Smoother optimization technique (Bruhwil-
er et al., 2005) to minimize J(s) in Equation (4) rather than 
a full-matrix batch mode inversion. In this technique, only a 
subset of the transport information is kept at each time step, 
because most of the signal from source regions decays within 
a few months to half a year. The time window of the transport 
information kept is called the lag length. We used a lag length 
of three months based on the results of the numerical experi-
ments performed by Maksyutov et al. (2009) on the influence 
of various time windows. The detailed description about the 
fixed-lag Kalman smoother applied for atmospheric inversion 
is given in Bruhwiler et al. (2005).

The inversion process employed in this study is illustrated 
in Fig. 2. The modelled CO

2
 concentrations z

mod
 are sum of the 

background concentrations z
b
 and the presubtracted concentra-

tions z
p
 calculated by GELCA. The calculation of z

b
 is started 

from the initial CO
2
 mixing ratio 3D field based on an ensemble 

of forward simulation results by six different transport mod-
els: Gap-filled and Ensemble Climatology Mean (Saito et al., 
2011). Details about the prior fluxes used to calculate z

p
 are 

given in the next section. In each inversion cycle, the modelled 
concentrations are compared to observations z

ob
 and the state 

vector s is optimized with a 3-month window. With the response 
functions prepared by GELCA, posterior fluxes from step t are 

(7)K = QH
T
(R + HQH

T
)
−1.

where H is a matrix of the sensitivities of observations to changes 
in emissions or initial conditions and v represents the model–data 
mismatch error, which includes both observational and model er-
rors. The sensitivity of the observations to emission fields can be 
decomposed into two parts for the coupled model:
 

The term H
near_site

 represents the sensitivity of the observations 
at a particular site to emissions surrounding the site as calcu-
lated by FLEXPART. The term H

background
 represents the sensi-

tivities to background emissions (i.e. the impact of emissions 
beyond the immediate vicinity of the site), which are estimated 
by NIES-TM.

Using the Bayesian approach, the measure of the fit between 
modelled source strengths s and observed values z is expressed 
as a cost function J(s), assuming that s, z, and their uncertainties 
can be described as Gaussian probability density functions: 

where sp is the vector of the prior source strength, R is the 
observation error covariance matrix and Q is the prior source 
strength error covariance matrix. The prior covariance structure 
describes the uncertainties of each regional flux, and the corre-
lation in space of the regional fluxes. In the current study, we 
assumed a diagonal prior covariance matrix, which means that 
estimated fluxes were assumed to show no correlation. At the 
minimum of J(s), the posterior source strength vector s and the 
posterior covariance matrix Q′ are expressed as

(3)H = H
near_site

+ H
backgound

.

(4)J(s) =
1

2

[

(z − Hs)
T
R
−1
(z − Hs) +

(

s − s
p

)T
Q

−1
(

s − s
p

)

]

,

(5)s = s
0
+ K

(

z − Hs
0

)

,

(6)Q
�
= (I − KH)Q,
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Fig. 3. Definitions of the 64 regions used in the inversion.



6 T. Shirai et al.

The prior flux uncertainty for land regions and oceanic 
regions were prescribed as the mean standard deviation of 
the monthly NEE calculated by VISIT for the past 30  years 
(1979–2009) and the mean standard deviation of the oceanic 
flux assimilated by OTTM for the period 2001–09.

2.4.  Atmospheric CO
2
 observational data

In this study, the global atmospheric CO
2
 data are from the pack-

age version obspack_co2_1_PROTOTYPE_v1.0.3_2013-01-29, 
hereafter called the ObsPack product, which includes actual CO

2
 

measurement data from multiple observation platforms, includ-
ing towers, aircraft, and ships, contributed by 22 laboratories 
from around the world. Quality control of data in the ObsPack 
products is left to the data providers, which means that the crite-
ria for data selection are not uniform across each product. Most 
of the data are provided by the data providers as ‘representative 
of site,’ indicating that the data have been selected to represent 
large, well-mixed air masses. When there was more than one 
laboratory conducting the same type of measurements during 
the same time period at a given site, we chose only one (priority 
was given to NOAA). For tower sites, which provide data from 
multiple sampling altitudes, we used only data from the high-
est level as representative of the boundary layer mixing ratio. 
The programmable flask package, an automated grab sampler 
(Turnbull et al., 2012), was categorized as a flask sampler in this 
study. The details of each measurement technique are available 
elsewhere (e.g. Gomez-Pelaez and Ramos, 2011; Stephens et al., 
2011). All sites used in this study are listed in Table 1.

The mean annual values of RSD were used as elements 
of the data mismatch error covariance matrix. The RSD for 
corresponding sites are provided in the obspack_co2_1_
GLOBALVIEW-CO2_2013_v1.0.3_2013-05-24 product  
(GLOBALVIEW-CO2, 2013). For the sites that are not included 
in the GLOBALVIEW product, we used the average RSD val-
ues of all other sites over a latitudinal zone of 20° and an alti-
tudinal level of 1 km. These RSD values were also used in data 
filtering described in Section 2.2. The minimum uncertainty 
value was set to 0.25 ppm.

In this study, we conducted sensitivity tests for different 
cases, each consisting of different site/data selections and obser-
vation uncertainties, to determine the impact of the observation 
settings on the inversion results. We prepared five cases, a con-
trol case data-set and four different subsets of the control case. 
The control case used all of the sites listed in Table 1, whereas 
the other four cases included only selected sites (indicated by 
checkmarks in the four right-hand columns of the table). The 
number of sites and types of data used in each case are shown 
in Table 2. A total of 154 sites were used in the control case, 
including 35 continuous measurement sites and 27 aircraft 
sites. Among 35 continuous sites, data from 29 sites were pre-
treated to give the ‘afternoon mean’ and ‘night-time mean’ that 
is the average value of 12–16LT and 2–5LT, respectively. We 

calculated from the optimized state vector, and incorporated 
into the background concentration for step t + 1.

In the inversion process, we applied a criteria to filter outliers 
from data-sets. We deselected data points for which the model–
data mismatch exceeded three times of the annual value of the 
residual standard deviation (RSD) around the smooth-fit curve 
of the measurements at each site. These data-filtering criteria 
worked much more effectively in keeping as many data while 
filtering obvious outliers than eliminating data points with a 
larger model–data mismatch than a certain fixed value because 
the filtering condition is nicely adjusted according to the normal 
variability of CO

2
 records at each site.

The calculation period was from January 2001 to Decem-
ber 2011. The first year was considered to be a spin-up period. 
Fluxes were solved monthly for 64 regions: 42 land regions and 
22 ocean regions (Fig. 3).

2.3.  Prior CO
2
 flux estimates and their uncertainties

As prior CO
2
 fluxes, we used daily terrestrial biosphere fluxes,  

monthly oceanic fluxes, monthly fossil fuel CO
2
 emissions, and 

monthly biomass-burning emissions. The spatial resolution of 
all prior fluxes used in this study was 1° latitude × 1° longi-
tude. The fluxes from the biosphere, the oceans, and fossil fuel 
burning were developed for the NIES Level 4 data product of 
the Greenhouse gas Observing SATellite (GOSAT) project; de-
tailed descriptions are available in Maksyutov et al. (2013).

For daily CO
2
 exchange between the terrestrial biosphere 

and the atmosphere, Net Ecosystem Production (NEP) of 
the Vegetation Integrative SImulator for Trace gases (VISIT) 
process-based biosphere model was used (Ito, 2010). The phys-
iological parameters of the VISIT model were optimized by the 
method described by Saito et al. (2014).

The monthly ocean-atmosphere CO
2
 exchange was calcu-

lated by an ocean pCO
2
 data assimilation system (Valsala and 

Maksyutov, 2010) based on an ocean offline tracer transport 
model (OTTM) (Valsala et al., 2008). The OTTM was coupled 
to a simple biogeochemical model that synthesizes the surface 
ocean pCO

2
 and air-sea CO

2
 flux by a variational assimilation 

method.
Fossil fuel emissions, which were imposed in forward and 

inverse calculations, were obtained from the Open-source Data 
Inventory of Anthropogenic CO

2
 (ODIAC) emission data-set 

(Oda and Maksyutov, 2011); emission estimates were based 
on CDIAC the country-level estimates (~2008) and to the 
year 2008 emissions were projected up to 2011 by using data 
from the British Petroleum Statistical Review of World Energy 
(British Petroleum, 2012). The emissions data-set used in this 
study are available from the NIES web site (http://db.cger.nies.
go.jp/data-set/ODIAC/).

Prior estimates of CO
2
 emissions from biomass burning were 

taken from the Global Fire Emissions Database version 3.1 
(Giglio et al., 2010; van der Werf et al., 2010).

http://db.cger.nies.go.jp/data-set/ODIAC/
http://db.cger.nies.go.jp/data-set/ODIAC/
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used both afternoon and night-time means in the control case. 
We used only data collected at 00:00 UTC and 12:00 UTC val-
ues when continuous data were provided at an hourly time step, 
which was the case for 3 JMA sites (MNM, RYO, and YON 
in Table 1). Since these sites are ‘marine boundary’ sites, we 
considered diurnal cycles were not significant. Among 27 air-
craft sites, 26 are vertical profiles at certain locations except 
CONTRAIL (CON; Comprehensive Observation Network for 
Trace gases by Airliner) (Machida et al., 2008; Matsueda et al., 
2015) of which we used data from a specific sampling mode 
ASE (Automatic Air Sampling Equipment) that sampled at cer-
tain latitudes during the level flight along a nearly fixed route 
between Narita and Sydney/Brisbane. For CON, we aggregated 
the data by 5 latitude bin between 30N and 25S, whereas for 
other aircraft sites, we aggregated the data by vertical bins. The 
interval of the vertical bins varied from 0.5 to 2  km, mostly 
following the interval used for the corresponding site in the 
GLOBALVIEW product, 2013.

Case CT used 90 surface sites, including 22 continuous 
measurement sites and a shipboard site but no aircraft sites. This 
case was named Case CT because the selected sites are those 
used by CarbonTracker North America (CT2011_oi), a CO

2
 

measurement and modelling system developed by NOAA (Peters  
et al., 2007). For Case CT, a prior observation uncertainty was 
assigned to each observation site according to the categories 
defined by Peters et al. (2005); these uncertainties ranged 
between 0.75 ppm (marine boundary layer) and 7.5 ppm (difficult 
sites). Case NF used 61 surface flask sites in the NOAA ESRL 
Cooperative Global Air Sampling Network (Dlugokencky  
et al., 2013); it included no continuous-measurement or aircraft 
sites. The case NF was named meaning ‘case NOAA Flasks’. In 
this study, a sensitivity test was first conducted using the control 
case, Case CT, and Case NF. The observation locations of these 
three cases are shown in Fig. 4. Case SEL and Case NA were 
then defined on the basis of the inversion results obtained in the 
first sensitivity test. For Case SEL, three sites that showed large 
model–data mismatch values were removed from the control 
case. The name SEL means that the ‘data selection’ is applied. 
For Case NA, all aircraft data were removed from Case SEL. 
NA stands for ‘no aircraft data’. Details of these two cases are 
explained in Sections 3.5 and 3.6.

3.  Results and discussion

3.1.  Global budget/trend

Decadal time series of the annual CO
2
 fluxes estimated by 

inversion using the five different observation data-sets (five 
cases) described in Section 2.4 are shown in Fig. 5. The glob-
al net fluxes into the atmosphere are also plotted against the 
global atmospheric CO

2
 growth rate derived directly from the 

observed CO
2
 (Dlugokencky and Tans, 2014) for comparison. 

1 P
la

tf
or

m
 a

nd
 s

am
pl

in
g 

m
et

ho
d:

 g
, s

ur
fa

ce
; a

, a
ir

cr
af

t; 
t, 

to
w

er
; s

, s
hi

pb
oa

rd
; f

, f
la

sk
; i

, c
on

tin
uo

us
; p

, p
ro

gr
am

m
ab

le
 f

la
sk

 p
ac

ka
ge

 (
T

ur
nb

ul
l e

t a
l.,

 2
01

2;
 c

on
si

de
re

d 
a 

fl
as

k 
sa

m
pl

in
g 

m
et

ho
d 

in
 th

is
 

st
ud

y)
.

2 T
he

se
 p

ar
am

et
er

s 
m

ay
 c

ha
ng

e 
ov

er
 ti

m
e;

 o
nl

y 
th

e 
m

os
t c

ur
re

nt
 in

fo
rm

at
io

n 
is

 li
st

ed
 in

 th
e 

ta
bl

e.
3 T

em
po

ra
l d

at
a 

se
le

ct
io

n 
ap

pl
ie

d 
in

 C
as

e 
SE

L
 a

nd
 C

as
e 

N
A

: a
, o

nl
y 

af
te

rn
oo

n 
m

ea
n 

w
as

 u
se

d;
 n

, o
nl

y 
ni

gh
t-

tim
e 

m
ea

n 
w

as
 u

se
d.

W
K

T
M

oo
dy

, T
ex

as
N

O
A

A
g

p
31

.3
1° N

97
.3

3° W
70

8
0.

16
2.

88
0.

89
5

✔
　

✔
✔

N
O

A
A

t
i

31
.3

1° N
97

.3
3° W

70
8

✔
　

✔
a

✔
a

W
L

G
M

t. 
W

al
ig

ua
n

N
O

A
A

g
f

36
.2

9° N
10

0.
90

° E
38

15
−

0.
33

1.
10

0.
98

7
✔

✔
✔

✔
W

SA
Sa

bl
e 

Is
la

nd
, N

ov
a 

Sc
ot

ia
E

C
g

i
43

.9
3° N

60
.0

2° W
30

−
0.

46
2.

27
0.

95
5

✔
　

✔
✔

Y
O

N
Y

on
ag

un
iji

m
a

JM
A

g
i

24
.4

7° N
12

3.
02

° E
50

−
0.

48
1.

44
0.

98
　

　
✔

✔
Z

E
P

N
y-

A
le

su
nd

, S
va

lb
ar

d
N

O
A

A
g

f
78

.9
1° N

11
.8

9° E
47

9
−

0.
02

0.
86

0.
99

5
✔

✔
✔

✔



12 T. Shirai et al.

The time series of the global net fluxes agreed well among the 
five cases and were generally consistent with the time series 
of the observed growth rate with respect to both year-to-year 
variations and annual mean values (Fig. 5(a)). The interannual 
variability of the net fluxes appeared to be strongly correlated 
with the variability in the land CO

2
 flux, shown in Fig. 5(b). 

The large interannual fluctuations of the land flux correspond to 
El Niño-Southern Oscillation (ENSO) phases (Fig. 5(d)). High 
growth rates of the CO

2
 mixing ratio in 2003, 2005, 2007 and 

2010 were likely due to reduced CO
2
 uptake by land during El 

Niño phases (Jones et al., 2001; Knorr et al., 2007; Mabuchi, 
2013). The low land CO

2
 uptake in 2002 is considered to be due 

to global dry condition during the period (Knorr et al., 2007). 
The interannual variations of the estimated land flux is in phase 
with the ensemble results of nine dynamic global vegetation 
models (Le Quéré et al., 2013) and with the atmospheric inver-
sion results of an ensemble of 11 transport models (Peylin et al., 
2013) and 7 transport models in which GELCA is included as 
well (Thompson et al., 2016). The increasing tendency of the 
land CO

2
 sink in the early 2000s (Fig. 5(b)) was also reported  

by Peylin et al. (2013). The effect of ENSO events on the ocean 
CO

2
 flux (Fig. 5(c)) is not clear. In an intercomparison study of 

-90

-60

-30

0

30

60

90

 surface discrete   ship  surface continuous

 surface continuous     aircraft surface discrete   ship

 surface discrete   ship

 (a) control case 
     & Case SEL (green symbols removed)
     & Case NA (red symbols removed)

 surface continuous : removed for Case SEL     surface discrete   

 (b) Case CT

 (c) Case NF

0 60E 180 60W 090E 90W

-90

-60

-30

0

30

60

90

0 60E 180 60W 090E 90W

-90

-60

-30

0

30

60

90

0 60E 180 60W 090E 90W

Fig. 4. Map showing the observation site locations of the different 
site selection cases: (a) control case (all symbols), Case SEL (green 
symbols removed), and Case NA (red symbols removed); (b) Case 
CT and (c) Case NF. Symbol shapes indicate the type of sampling: ○, 
surface discrete; +, surface continuous; ▾, ship; , aircraft.

Table 2. Types of observation sites used in each case.

Case Total Surface 
flask 

Surface 
in situ 

Tower Ship-
board

Air-
craft

Control 
case 

154 82 33 10 2 27

Case 
CT

90 67 14 8 1 0

Case 
NF

61 60 0 0 1 0

Case 
SEL

151 81 31 10 2 27

Case 
NA

124 81 31 10 2 0

Table 3. The number of data used in the inversion, mean bias, root-
mean-square error (RMSE), and correlation coefficient (R): (a) control 
case, Case CT, and Case NF; and (b) control case, Case SEL, and Case 
NA.

Case 
Number of 

data Bias (ppm) 
RMSE 
(ppm) R

(a)

Control case 171,641 0.21 1.34 0.962
Case CT 78,821 0.25 1.66 0.958
Case NF 28,578 0.23 1.07 0.974

(b)

Control case 171,641 0.21 1.34 0.962
Case SEL 156,549 0.18 1.29 0.963
Case NA 115,082 0.20 1.53 0.958
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3.2.  Regional flux distributions

The spatial distributions of the decadal mean CO
2
 fluxes during 

2002–2011 of the control case, Case CT, and Case NF are shown 
in Fig. 6. Although the global net fluxes agreed well among 
these three cases, at regional scales, we can see differences in 
the estimated CO

2
 fluxes among them due to the different obser-

vational data used in each case. The three inversion results share 
some features in common, such as increased uptake in temper-
ate South America and boreal Eurasia and increased emissions 

the air-sea CO
2
 flux in the Pacific Ocean (Ishii et al., 2014), an 

association of interannual variation in the tropics with ENSO 
events was suggested by diagnostic models and ocean general 
circulation models, but it was not clear in the results of atmos-
pheric inversions. Since global interannual variability of land 
fluxes is generally larger than that of oceanic fluxes, it is more 
challenging for atmospheric inversions to resolve the global 
interannual variations of oceanic fluxes without interference 
from larger atmospheric CO

2
 fluctuations mainly caused by 

land fluxes.

(a)

(b)

(c)

(d)

Fig. 5. Comparison of global annual mean posterior fluxes: (a) net, (b) land biosphere, and (c) ocean. (d) Multivariate ENSO Index (MEI) (Wolter 
and Timlin, 1993) for 2002–2011. Positive fluxes indicate emission and negative fluxes indicate uptake. In (a), the global annual mean atmospheric 
CO

2
 growth rate is shown with net fluxes. The CO

2
 growth rate in ppm are converted to the emission rates in Pg of carbon with a conversion factor 

of 2.12 PgC ppm−1 via simple molecular weight considerations. In (b) and (c), the global annual mean prior fluxes for land biosphere and ocean are 
shown, respectively.
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of Case CT and Case NF changed the flux to negative. In the 
control case, which had more observational constraints than the 
other two cases, the flux was estimated to be positive. The rea-
son for this difference is discussed in Section 3.6.

Table 3 shows the number of data used in the inversion in 
these three cases. The control case used twice as many obser-
vational data as Case CT and six times as many as Case NF. 

in tropical South America and south-western Europe, compared 
to the prior fluxes. These regions, except for south-western 
Europe, are poorly constrained. The results for tropical Asia 
(Region 33) are interesting. The decadal mean CO

2
 flux from 

this region was positive (emission) in the control case, but nega-
tive (uptake) in both Case CT and Case NF. Considering that the 
prior flux in this region is positive, the observational constraints 

Fig. 6. Decadal mean (2002–11) spatial distributions of posterior fluxes for (a–c) land and (e–g) ocean regions: (a, e) control case, (b, f) Case CT, (c, g)  
Case NF. Prior fluxes from the (d) land biosphere and (h) ocean. Positive fluxes indicate emission and negative fluxes indicate uptake.
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Europe (regions 40 and 42) is barely constrained owing to 
fewer observation sites. Therefore, the high UR in Transcom3 
‘Europe’ is due mainly to the denser observation network in 
Western Europe.

Just on the basis of the number of observations, the control case 
would be expected to constrain the regional flux estimation 
much better. However, not only does the effectiveness of the 
inversion depend on the amount of observational data, but it 
also depends strongly on the spatial (and temporal) coverage 
of the observation sites. We evaluate the effectiveness of the 
inversion using two indicators, the uncertainty reduction (UR) 
and the model–data mismatch, in the following sections.

3.3.  Uncertainty reduction

UR is a measure commonly used to evaluate the effectiveness 
of observational constraints in different regions. UR is defined 
as the relative difference between the prior and posterior flux 
uncertainty:

where �
post

 and �
pri

 are the quadratic means of the posterior 
standard deviation and the prior standard deviation, respectively.  
By definition, the more the posterior error is reduced relative to 
the prior error, the closer to 1 UR becomes, which means that 
more information from observations is provided to the inver-
sion. Figure 7 shows the UR calculated for each region in each 
of the three cases. UR is higher in land regions in the northern 
mid-high latitudes, where observations are the most abundant 
in the framework of the current surface observation network, 
whereas UR is lower in the poorly covered tropical Northern 
Hemisphere and the whole Southern Hemisphere. The global 
pattern of the UR distribution is consistent with the UR distri-
butions reported by Chevallier et al. (2010), who conducted an 
inversion at both grid scale (3.75° × 2.5° longitude × latitude) 
and regional scale (22 Transcom3 regions distributed world-
wide).

The control case showed higher UR than Case NF and Case 
CT in all regions, and the difference was significant in East Asia 
and southern Europe, where the control case had better data 
coverage. Case CT had strong constraints in North America, 
which is the target of the CarbonTracker North America project 
(Fig. 7(b)). Outside of North America, however, Case CT had 
slightly lower URs than Case NF. Considering that most of the 
stations included in Case NF were also in Case CT, this UR 
difference may be due to the relatively larger prior observation 
uncertainty values assigned to sites outside North America, 
which resulted in the constraints in Case CT being weaker than 
those in Case NF.

The UR became more sensitive to the exact location of 
each observational station as the spatial scale became finer. 
For example, the Transcom3 ‘Europe’ region is, as a whole, 
relatively well covered by observations, but in our land 
mask in which the Transcom3 ‘Europe’ is divided into four 
sub-regions, Western Europe (regions 39 and 41) is well con-
strained with denser observation coverage, whereas Eastern 

UR = 1 −
�

post

�
pri

,

a) control case

b) Case CT

c) Case NF

-90

-60

-30

0

30

60

90

180120600 E E 120W 60W   0  

-90

-60

-30

0

30

60

90

180120600 E E 120W 60W   0  

-90

-60

-30

0

30

60

90

180120600 E E 120W 60W   0  

0.1 0.3 0.5 0.7 0.90.0 0.2 0.4 0.6 0.8

Fig. 7. Uncertainty reductions by region: (a) control case, (b) Case CT, 
and (c) Case NF.
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3.4.  Model–data mismatch

The model–data mismatch is another measure used to evaluate 
the effectiveness of inversion results. We compared the forward 
simulation results using the optimized fluxes with observed 
CO

2
 mixing ratios at the observation sites and calculated three 

measures of the model–data mismatch: the model–data bias, the 
root-mean-square error (RMSE), and the linear correlation. The 
model–data bias is a systematic mismatch between observations 
and model (model minus observations) throughout the observa-
tion period. The RMSE is an aggregated form of the residuals (the 
difference between simulated values and observed values). The 
correlation indicates the strength and direction of the linear rela-
tionship between model output and observed values. These three 
measures of the model–data mismatch calculated for each obser-
vation site in the control case are shown in Table 1, and the aver-
aged values for all sites used in each case are shown in Table 3.

Table 3(a) compares these measures among the control case, 
Case CT, and Case NF. In the control case, the global mean 
bias of 0.21 ppm was the smallest of the three cases. The mean 
RMSE was ±1.34 ppm for the control case, ±1.66 ppm for Case 
CT, and ±1.07 ppm for Case NF. The differences in RMSE may 
reflect the fraction of continuous data in each data-set, because 
the RMSE is affected by the higher variability of continuous 
data compared with flask data. The mean correlation coefficient 
R was 0.962, 0.958, and 0.974 for the control case, Case CT, 
and Case NF, respectively. The model–data correlations were 
high for all cases, indicating overall good performance of the 
GELCA inversion system.

The bias and RMSE for each site in the three cases are shown 
in Fig. 8. The observations were not well reproduced by the 
model at sites that showed high values of both bias and RMSE. 
Nine sites in the control case showed a bias larger than ±1 ppm: 
Heidelberg (HEI), Toronto (TOT), Bukit Kototabang (BKT), 
Black Sea (BSC), Lutjewad (LUT), Sutro Tower (STR), Hohen-
peissenberg (HPB), Baltic Sea (BAL), and Point Arena (PTA). 
We investigated the reasons for the discrepancies between obser-
vations and simulations at these sites. Among these nine sites, 
three were probably strongly influenced by a local CO

2
 flux such 

as urban emissions (HEI and TOT) or forest uptake (BKT). For 
sites located in cities or downwind of urban areas, the model often 
failed to reproduce sporadic sharp peaks in the observations. Con-
tinuous measurements inside urban areas (HEI and TOT) resulted 
in a significantly negative bias compared to background sites. 
LUT and STR often captured a high CO

2
 plume transported from 

urban areas of The Netherlands and San Francisco, respectively. 
In the case of BSC, the observational behaviour has apparently 
been changing. The prominent seasonal cycle seen in the early 
2000s gradually disappeared, and the frequency of significantly 
high mixing ratios increased in the late 2000s. These changes 
might reflect a change of either the surrounding environment 
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Fig. 8. Model–data mismatch for observation sites after inversion: 
(a) control case, (b) Case CT, (c) Case NF. The colour and size of the 
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of the open circles indicates the prior uncertainty value.
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Fig. 9. Comparison of decadal mean (2002–2011) spatial distributions of posterior fluxes for the land biosphere (left panels) and ocean (right panels): 
(a) control case, (b) Case SEL, (c) Case NA. Positive fluxes indicate emission and negative fluxes indicate uptake.
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18 T. Shirai et al.

in the vicinity and topographic features), and should be further 
investigated in future studies.

3.5.  Data selection to reduce observational noise

Based on the results reported in Section 3.4, we designed a new 
subset called Case SEL to minimize noise from observations. 
To avoid strong local influences, data from BSC, HEI, and TOT 
were excluded from Case SEL. We also applied temporal data 
selection to seven continuous sites located near source or sink 
areas. Only afternoon averages were used from the tower sites 
Boulder Atmospheric Observatory (BAO), Moody (WKT), 
Beech Island (SCT), Park Falls (LEF), West Branch (WBI), 
and Walnut Grove (WGC), and the Pallas-Sammaltunturi 
(PAL) surface site (PAL), to exclude local extreme values in 
the stable boundary layer at night. In contrast, only night-time 
averages were used from a mountain site, Shenandoah National 
Park (SNP; 1008 m above sea level) to minimize the bias from  

(possibly increasing CO
2
 sources) or the measurement system. 

When both the topography near a site and nearby source or sink 
distributions are complicated, the model tends to express a higher 
mismatch, as in the cases of HPB, BAL, and PTA.

GELCA showed significantly better performance compared 
to NIES-TM for the site that require finer resolution than 2.5° 
grid of NIES-TM. For example, two European tower sites 
Ochsenkopf (OXK; 50.0°N, 11.8°E) and Pic du Midi (PDM; 
42.9°N, 0.1°E) are located close to the border of the model 
grids in which the topography is rather complicated (on the top 
of mountain). Since NIES-TM cannot resolve the topographical 
change within a grid, the forward simulation doesn’t fit obser-
vation well. On the other hand, GELCA handles the simula-
tion in the vicinity of the observation sites with FLEXPART, 
resulting in much better fit at these difficult sites. The observed 
and simulated CO

2
 time series for OXK and PDM are shown in 

Supplementary Figure 2. The performance of GELCA depends 
on site-specific conditions (e.g. source and sink distributions 

Fig. 11. Differences between estimated annual mean regional CO
2
 fluxes from the (a) land biosphere and (b) ocean derived with and without aircraft 

observations (control case – Case NA) during 2002–11. The numbered regions are shown in Fig. 3. Positive fluxes indicate emission and negative 
fluxes indicate uptake.

http://dx.doi.org/10.1080/16000889.2017.1291158


19A DECADAL INVERSION OF CO
2
 USING THE GELCA

which reflects uptake by local vegetation, than of the daytime 
large-scale boundary condition. Thus, the net CO

2
 uptake in 

tropical Asia in Case CT and Case NF may be largely due to 
the BKT observations.

In contrast to Case CT and Case NF, the control case yielded 
net CO

2
 emissions in tropical Asia even though it used BKT 

data. The UR of the control case was higher not only in tropi-
cal Asia but also in the overall tropical southern Pacific Ocean, 
compared to Case NF and Case CT. This spatial distribution 
difference of UR suggests that net CO

2
 emissions in tropical 

Asia in the control case might result from the observational 

local sources or sinks. Temporal data selection has been used 
in previous studies carried out since the TransCom Continuous 
experiment (Peters et al., 2007; Law et al., 2008; Patra et al., 
2008; Chevallier et al., 2010).

Figure 9(b) shows the inversion results for Case SEL. The 
decrease in biospheric emissions from southwestern Europe 
(region 39) compared to the control case is the most prominent 
feature, whereas the impact of Case SEL was not significant in 
south-eastern Europe (region 40). The decadal mean decrease 
of biospheric emissions was 0.076 ± 0.024 PgC/region/year in 
north-western Europe, and 0.040  ±  0.026  PgC/region/year in 
south-western Europe; both values correspond to a 41% change 
from the estimated regional fluxes in the control case. This 
result indicates that HEI, BSC and PAL significantly affected 
the inversion results for Western Europe. Estimation of finely 
distributed anthropogenic and natural sources and sinks in 
Western Europe may need higher spatial and temporal resolu-
tion of both prior fluxes and transport simulation. In contrast, 
in North America, there was no significant difference between 
the control case and Case SEL. This result shows that the tem-
poral data selection of continuous tower observations and the 
removal of TOT did not significantly affect the flux estimation 
in North America.

3.6.  Effect of aircraft observations on flux estimates in 
tropical Asia

Here we discuss the large difference in terrestrial biosphere 
fluxes from tropical Asia (region 33) among the prior and three 
posterior fluxes described in Section 3.2. The decadal mean flux 
and UR for this region in the control case, Case CT, and Case 
NF are shown in Fig. 10. In tropical Asia, only one observation 
site, BKT in Indonesia, was used in this study (Fig. 4). We set 
the observation uncertainty for BKT to 2.8 ppm for the control 
case and Case NF; this value is derived from the RSD values 
of the data record at site BKT in the ObsPack GLOBALVIEW 
product. For Case CT, the observation uncertainty for BKT was 
set to 7.5 ppm, which is the maximum uncertainty in the Car-
bonTracker model, because of its relatively large model–data 
mismatch (Peters et al., 2005). The higher UR for Case NF than 
Case CT (Fig. 10) can be explained by the smaller prior uncer-
tainty assigned to BKT as well as by additional constraints from 
the Western Pacific Cruise (WPC; shipboard observations in the 
western Pacific Ocean; Fig. 4(c)) during 2004, which may have 
detected flux signals from tropical Asia.

As shown in Fig. 8, BKT showed the largest positive bias 
among all sites used in this study. A similar large positive bias 
for BKT has been found by many other atmospheric inversion 
studies as well (e.g. CarbonTracker Team, 2014). The flask 
sampling at BKT is conducted on a weekly basis, usually 
around 14:00 LT, when the CO

2
 hourly average mixing ratio 

reaches its minimum value (Nahas, 2012). Because the obser-
vation site is surrounded by a tropical rainforest, the samples 
may be more representative of the daily minimum mixing ratio, 

(a) 990 hPa

(b) 500 hPa

(c) 250 hPa

0    0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 [ppm]

Fig. 12. Annually averaged atmospheric CO
2
 distributions at 

(a) 990 hPa, (b) 500 hPa, (c) 250 hPa, calculated from monthly pulsed 
emission from tropical Asia (Region 33) in 2008.
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mixing ratios over the course of a month. The results shown in 
Fig. 12 indicate that the signal from surface fluxes in tropical 
Asia could be detected by aircraft observations in the mid/upper 
troposphere through vertical convection and the consequent 
rapid horizontal transport in the free troposphere. This active 
convection in tropical Asia as part of the Walker circulation 
must be a key process connecting surface fluxes and aircraft 
observations.

We next examined the impact of the aircraft data on the sea-
sonality of terrestrial biospheric fluxes from tropical Asia. The 
decadal mean seasonal cycle derived from the inversion using 
the aircraft data (control case) and the inversion without using 
the aircraft data (Case NA) are plotted with the prior flux in 
Fig. 13. The flux estimates in Case NA became significantly 
negative (sink) compared with the prior fluxes, whereas the 
seasonal estimates were mostly positive (source) in the control 
case. This might be due to the increased effect of the negative 
bias from BKT observation when we don’t use aircraft meas-
urements. A major difference in the estimated fluxes between 
the control case and Case NA was found during two periods: 
May–June and November–January. During May–June, the esti-
mated flux was almost zero in the control case, whereas Case 
NA estimated a sink. During November–January, the control 
case estimated large emissions, but Case NA estimated much 
lower emissions in November–December and even uptake in 
January. Niwa et al. (2012) have also pointed out CO

2
 emissions 

in tropical Asia during October–January in their atmospheric 
inversion for the period 2006–2008 using CONTRAIL data that 
were enhanced compared to an estimate made by using only 
ground-based data (GLOBALVIEW-CO

2
). Niwa et al. (2012) 

used CONTRAIL CME (Continuous CO
2
 Measuring Equip-

ment) data, which were binned and monthly averaged after 
smoothing and gap-filling, and the inversion was conducted 
with the NICAM-TM (Nonhydrostatic Icosahedral Atmos-
pheric Model-based Transport Model). We used only CON-
TRAIL ASE data without preprocessing, and we conducted the 
decadal inversion by GELCA. The decadal inversion results in 
this study confirmed the strong impact of aircraft data on sur-
face flux estimates in tropical Asia.

To further evaluate the seasonality of the estimated fluxes for 
tropical Asia, we compared our results with bottom-up stud-
ies. Among the limited number of bottom-up studies in this 
region, the seasonal cycle of NEP was estimated by continuous 
CO

2
 flux measurements using the eddy covariance technique 

in tropical peat swamp forests in Central Kalimantan (Hirano 
et al., 2007, 2012). These estimates suggest that the CO

2
 flux is 

positive during the rainy season (November–April) and the late 
dry season (August–October), whereas it is nearly neutral or 
slightly negative during the early dry season (May–July). The 
neutral flux in the early dry season and higher emissions during 
the early rainy season were also seen in the seasonal cycle of 
the control case (Fig. 13). The seasonal cycle of the control case 
agrees better with the results from the bottom-up study than 

constraints in the tropical southern Pacific Ocean, which were 
used only in the control case. These observational constraints 
are aircraft data such as Rarotonga (RTA; 21.25°S, 159.83°W) 
and CON, which were included only in the control case. There-
fore, we hypothesize that the aircraft data affected the inverted 
flux for the tropical Asia region in the control case. The meas-
urement periods of RTA and CON are 2001–2011 and 2001–
2009, respectively. The frequencies of both observations are 
biweekly on average.

To test this hypothesis, we conducted another sensitivity test 
by removing all aircraft observations from the control case. 
Without aircraft data, the decadal mean regional flux in trop-
ical Asia became negative (Fig. 9(c)). This result supports our 
hypothesis that the aircraft data strongly constrained the CO

2
 

flux estimate in this region. However, the differences did not 
appear to be significant in the oceans and other land regions. 
To check the sensitivity to aircraft data in detail, differences 
between decadal mean regional fluxes estimated with (Fig. 9(a)) 
and without (Fig. 9(c)) aircraft data are shown in Fig. 11. The 
flux difference in tropical Asia (region 33 in Fig. 11(a)) stands 
out among the regions. Among oceanic regions, the largest flux 
difference was found in South Pacific north (region 50 in Fig. 
11(b)). This sensitivity analysis indicates that tropical Asia and 
its neighbouring ocean regions are the areas most sensitive to 
the aircraft data used in the inversion.

To investigate how surface fluxes from tropical Asia are 
transported, we calculated the distribution of atmospheric CO

2
 

at three vertical levels, approximately 990, 500, and 250 hPa, 
from monthly, pulse emission from the region (annual mean 
is shown in Fig. 12). We kept a constant CO

2
 source (spatially 

distributed according to the multiple year mean of NEP from 
VISIT) in tropical Asia, and the transport model tracked its 
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Fig. 13. Monthly mean land biosphere posterior fluxes (control case – 
red; Case NA – green) and prior fluxes (VISIT – gray), averaged over 
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studies when aircraft measurements were used. These results 
confirm the importance of aircraft observations, especially in 
constraining surface fluxes in the tropics.

Overall, we found GELCA to be capable of handling various 
types of observations provided in ObsPack, and its performance 
in reproducing observed concentrations was good, with rea-
sonably small model–data mismatches. The sensitivity studies 
indicated that the reduction of uncertainty in CO

2
 flux estima-

tion could be improved by expanding the observation network. 
In particular, the study results highlighted the impact of aircraft 
measurements over the Pacific on surface flux estimation in 
tropical Asia. This study evaluated the basic performance of 
GELCA as an assimilation tool for top-down CO

2
 flux esti-

mation. Studies are now underway, for example, to integrate 
more observations (e.g. satellite data) into GELCA and to ana-
lyse certain regional carbon flux estimations. Our future plans 
include optimization of GELCA’s settings (e.g. the duration of 
backward simulation by FLEXPART, temporal/spatial resolu-
tions, and preprocessing of certain types of data) according to 
the specific aims of an investigation.
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Case NA. This result indicates that the inversion with aircraft 
data captures well the seasonal signals of the regional land bio-
sphere. Both our inversion results and those of the top-down 
study by Niwa et al. (2012) agree better with independent bot-
tom-up studies when aircraft data are included; thus, aircraft 
observations play a key role in constraining CO

2
 flux estimates 

in tropical Asia.

4.  Summary and conclusions

We presented an assimilation system for atmospheric CO
2
 using 

GELCA, and we demonstrated its ability to capture observed 
atmospheric CO

2
 mixing ratios and to estimate CO

2
 fluxes. 

In this study, to take full advantage of the data handling effi-
ciency of GELCA, we used non-smoothed observational data 
from ObsPack as constraints. ObsPack includes various types 
of direct atmospheric CO

2
 measurements, continuous tower 

measurements, and aircraft measurements, provided by a large 
number of laboratories around the world.

We conducted sensitivity studies to examine the impact of 
the observation network setting on the inversion results and 
to optimize the site/data selection to minimize noise while 
optimizing the signal from the extensive observation data-set. 
We selected five different sets of sites/data from ObsPack: (1) 
comprehensive data-set (control case); (2) data selection con-
formed to the CarbonTracker North America project (Case CT); 
(3) data selection conformed to the NOAA ESRL Cooperative 
Global Air Sampling Network (Case NF); (4) data selection 
according to the model–data mismatch of the inversion results 
of the control case (Case SEL); and (5) Case SEL without air-
craft sites (Case NA).

For all cases, the time series of the global net flux to the 
atmosphere were similar to that of the fluxes calculated from 
the growth rate of the observed global mean atmospheric CO

2
 

mixing ratio. At regional scales, estimated seasonal CO
2
 fluxes 

were altered by the selection of assimilated CO
2
 data. UR was 

derived at regional scale and compared among cases. In all 
regions, UR was higher in the control case than it was in Case 
CT and Case NF. Case CT showed considerably higher UR in 
North America, whereas outside of North America, Case NF 
showed slightly higher UR than Case CT. We employed three 
measures of model–data mismatch between the forward simu-
lation results using the posterior fluxes and the observed CO

2
 

mixing ratios: the model–data bias, RMSE, and the linear cor-
relation. For most observation sites, the model–data mismatch 
was reasonably small (global mean bias, 0.21  ±  0.03  ppm; 
mean RMSE, 1.38 ± 0.23 ppm; correlation coefficient R > 0.9 
for 91% of all used sites). There were some sites with a larger 
model–data mismatch, caused mostly by local conditions.

Surface fluxes in tropical Asia were found to be the most sen-
sitive to the use of aircraft measurements in the inversion. The 
seasonal cycle agreed better with the results from bottom-up 
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