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ABSTRACT
Drought is controlled and enhanced by changes in the local and global climate factors. The changes in the
global factors mainly occur on the vast oceanic surfaces, while the changes in the local factors occur in the
area of drought influence. In order to skilfully forecast and monitor drought occurrences, it is crucial that
the specific causal factors be identified and their links studied. Based on this concept, this study tried to
establish a relationship between the drought occurrences in Tigray region and the climate factors at the local
and global scale. Monthly gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.01 was
used to calculate the Standardized Precipitation and Evapotranspiration Index (SPEI). As potential global
causal factors, SOI (Southern Oscillation Index), Sea Surface Temperature Anomalies (SSTAs) of the tropical
oceanic surfaces, the Red Sea and Nino 3.4 regions were obtained from various sources. Vegetation cover
and albedo data were also considered as local drought causal factors. The analyses results show that the
zero-time-lag SSTA in the tropical Indian Ocean was identified as statistically significant (p< 0.01) drought
influencing factor accounting for 5.8% and 8% of the variations in SPEI, at 1-month and 6-month time
scales respectively. At 12-month time scale, however, the SSTAs in the tropical Indian Ocean, tropical
Atlantic Ocean, tropical Pacific Ocean, the Red Sea and Nino 3.4 regions were designated as drought
influencing factors. Differently, at 24-month time scale, SOI was also identified as drought influencing factor
in addition to the SSTAs in the tropical Indian Ocean, tropical Pacific Ocean and the Red Sea region. In
general, the findings revealed the variability in the number and type of causal factors based on time scale and
time-lag. Nevertheless, the ability of the identified factors to explain the variation in SPEI remained small at
all timescales investigated. This, therefore, indicates the need for further investigation on other drought
causal factors in the study area.

Keywords: albedo, causal factors, drought, sea surface temperature, vegetation cover

1. Introduction

More than 50 climate variables also known as ‘essential
climate variables’ were identified by the Global Climate
Observing System (GCOS) program with the intention of
aiding systematic observation on a limited number of crit-
ical climate elements (Bojinski et al., 2014). From among
the listed climate variables by GCOS, sea surface tem-
perature change and the pressure difference based
Southern Oscillation Index (SOI) are the most commonly

studied prominent sources of climate variations at the
global scale (Nobre and Srukla, 1996; Soden et al., 1999;
Trenberth and Caron, 2000; Yan et al., 2011). Sea surface
temperature (SST), as one of the important oceanic essen-
tial climate variables, can be used to understand the inter-
action between the ocean and atmospheric phenomenon
(Bojinski et al., 2014; WMO and GCOS, 2015; Reynolds
et al., 2007). Various studies (Atlas et al., 1993; Nobre
and Srukla, 1996; Rajagopalan et al., 2000; Lu and
Delworth, 2005; Feng et al., 2008) has indicated that SST
changes also affect drought occurrences at different parts�Corresponding author. e-mail: c.amaresisay@gmail.com
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of the world. In addition to the conventional SST data,
however, several SST based indices have been used to
monitor the oceanic surfaces, thus drought conditions
worldwide. These indices are based on SST anomalies
averaged across a given region relative to a 30-year base
period. The most common indices are the Ni~no 3.4 index
(Bunge and Clarke, 2009; Michelle et al., 2015) and the
Oceanic Ni~no Index (ONI) (Trenberth, 2019). The Ni~no
3.4 anomalies represent the average equatorial SSTs
across the Pacific Ocean from about the dateline to the
South American coast, also called the Nino 3.4 region.
This was first identified by Barnston et al. (1997). The
region covers a geographical area lying between 5� North
to 5� South latitude and 170� West to 120� West longi-
tude. According to Trenberth (2019), the operational def-
inition used by National Oceanic and Atmospheric
Administration (NOAA) uses a 5-month running mean to
estimate the Ni~no 3.4 index, and El Ni~no or La Ni~na
events are defined when the Ni~no 3.4 SST exceeds on
average 0.4 �C for a period of six months or more.
Differently, The ONI uses a 3-month running mean,
within the Nino 3.4 region, and El Ni~no or La Ni~na
events are defined when the SST anomalies exceed on
average 0.5 �C for at least five consecutive months.

The Southern Oscillation Index (SOI), on the other
hand, is a measure of the large-scale air pressure variabil-
ities between the western and eastern tropical Pacific dur-
ing El Ni~no and La Ni~na episodes (Konnen et al., 1998;
Climate Prediction Center, 2005; Yan et al., 2011). SOI is
described by Trenberth (2019) as a standardized index
calculated using the observed sea level pressure differen-
ces between Tahiti and Darwin. Prolonged periods of
negative or positive SOI values match with abnormally
warm or cold ocean waters across the eastern tropical

Pacific Ocean indicating El Ni~no/La Ni~na episodes
(Climate Prediction Center, 2005). Moreover, links
between El Ni~no or La Ni~na Southern Oscillation
(ENSO) events and drought have been established by dif-
ferent studies. For instance, Janicot et al. (1996) observed
a strong association between drought and ENSO events
in the Sahel region after the year 1970. Another study,
Nury and Hasan (2016), examined the link between
ENSO and drought occurrences in Bangladesh and estab-
lished a significant relationship.

In addition to the global climate factors, local factors
such as albedo and vegetation cover are also known to
affect climate. According to Coakley (2003), Dobos
(2011) albedo refers to the whiteness of a surface defined
by the fraction of the incoming radiation reflected from
the surface. Due to its importance as a climate control
factor, it is recommended by Henderson-Sellers and
Hughes (1982) that the local, zonal and global albedo
variability be given emphasis and closely monitored as a
source of climatological data. Various studies have also
indicated the importance of surface albedo as an energy
balance indicator, thus climate control factor
(Henderson-Sellers and Hughes, 1982; Audu et al., 2014;
Gul et al., 2018; Kravitz et al., 2018). According to
Courel et al. (1984), Evans et al. (2017) drought could
enhance surface albedo by increasing moisture loss lead-
ing to the eventual degradation of vegetation cover. On
the other hand, albedo could enhance drought by increas-
ing evapotranspiration and reducing precipitation by
decreasing the net convective cloud (Charney et al.,
1977). A study by Zhang and Liang (2018) has indicated
that land cover transitions in China have resulted in
increased evapotranspiration and albedo, hence, were
able to describe the land surface temperature changes

Fig. 1. Map of the study area.
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significantly. In addition to albedo, De Ridder (1998),
Deo et al. (2009) have indicated the significant role of
vegetation in reducing drought by creating positive feed-
back and enhancing precipitation cycling. Therefore,
vegetation cover has also been used as a means to moni-
tor drought in different parts of the world (Liu and
Kogan, 1996; Peters et al., 2002). Based on these facts,
thus, this study was initiated with the aim to examine the
trend of selected global and local climate factors and
their link to the drought occurrences in Tigray region. By
identifying the statistically significant drought influencing
factors, this study further examined the drought predic-
tion skills at varying time scale.

2. Materials and methods

2.1. Study area

This study was conducted in one of Ethiopia’s most
drought-affected regions, the Tigray region (Fig. 1).
Geographically it is located between 12�15’N and
14�57’N latitude and 36�27’E and 39�59’E longitude cov-
ering a total area of 53,683 square kilometres
(Gebrehiwot et al., 2011). The altitude of the study area
varies between 500 m and 3800 m above sea level
(Tesfay, 2006; Abraha, 2013).

Climatologically, the study area is categorized under
sub-tropical climate with highly uneven distribution of
seasonal rainfall and recurrent droughts. As indicated in
Fig. 2, the area receives its maximum rainfall during the

summer season that starts in June and lasts until August
(Abraha, 2013). According to Gebrehiwot et al. (2011),
the mean annual rainfall of the region is estimated to be
473mm, with the average annual temperature varying
between 7.5 �C, in the highlands, and about 27 �C in the
eastern lowlands (Abraha, 2013).

Given the ages of human occupation, little remains of
the original vegetation cover in Tigray region (Abraha,
2013). The current land cover comprises a mosaic of cul-
tivation, with grassland and shrubland. In the lowlands,
there remains an extensive area of woodland and shrub-
land with areas of shifting cultivation. The natural forest
resource of the region is extensively exploited and
accounts only for about 0.2% of the total land area. The
decline in forest cover has a long history and is highly
linked with human economic activities and population
pressure. In Tigray region, agricultural land use expan-
sion is reported to have increased at the expense of main-
taining natural vegetation in the region. This, as a result,
has supplemented the adverse impacts from the frequent
occurrence of drought (Nyssen et al., 2009).

3. Data collection and data processing

3.1. Climate data

Even though there are meteorology stations in Tigray
region, they are mostly characterized by short climate
records containing missing values for several months or
years. Therefore, in order to avoid errors and

Fig. 2. Mean monthly (a) and mean annual (b) precipitation and temperature of the study area for the period 1901 to 2016.
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misrepresentations from the use of local climate data, a
high resolution (0.5� � 0.5�) gridded Climatic Research
Unit (CRU) Time-series (TS) data version 4.01 dataset
was collected from KNMI (Koninklijk Nederlands
Meteorologisch Instituut) climate explorer (https://cli-
mexp.knmi.nl/start.cgi) on 12 systematically selected grid
points (Fig. 1). The grid points were systematically dis-
tributed over the study area with an elevation range of
661 m to 2553 m above mean sea level. The gridded
CRU TS 4.01 data is a month-by-month variation in cli-
mate over the period 1901 to 2017, produced by CRU at
the University of East Anglia (Harris and Jones, 2017).
There are also other widely used dataset versions like
CRU TS 2.1. The CRU TS 2.1 dataset was developed by
Mitchell and Jones (2005), with a temporal coverage of
1901 to 2002. However, the CRU TS 4.01 dataset was
used for drought analyses because of its wider tem-
poral coverage.

3.2. Global factors

The sea surface temperature dataset used in this research,
daily Advanced Very High-Resolution Radiometer
(AVHRR-only) version 2 data with a spatial resolution
of 0.25� (Reynolds et al., 2002; Reynolds et al., 2007), is
part of the National Oceanic and Atmospheric
Administration (NOAA) Climate Data Record (CDR)
program product suite (Banzon et al., 2016). This data
was used because of its long-time record and its wide spa-
tial coverage. Additionally, the Nino 3.4 SSTA monthly
data and the SOI were obtained from NOAA. The SSTA
in the Nino 3.4 region and SOI were selected for analyses
mainly due to the fact that different studies (Trenberth,
1997; Knaff and Landsea, 1997; Chowdhury, 2003;
Gergis and Fowler, 2005) indicated their significant rela-
tionship with ENSO events that occurred in the tropical
Pacific. Hence, the 1981 to 2010 base period Extended
Reconstructed Sea Surface Temperature Version 5
(ERSSTV5) monthly SSTA and the SOI data were
obtained from the National Oceanic and Atmospheric
Administration (NOAA) and used to examine their con-
nection with the drought events that occurred in the
study area.

3.3. Local factors

Studies (Charney et al., 1975; Hu et al., 2000; Norton
et al., 2002; Pielke et al., 2002; Singh et al., 2003; Wan
et al., 2004; Fensham et al., 2005; Juszak et al., 2014;
Sentian and Kong, 2015; Banzon et al., 2016) indicate
that AVHRR and Moderate Resolution Imaging
Spectroradiometer (MODIS) image-based Albedo and
Normalized Vegetation Index (NDVI) data can be used

to monitor vegetation changes and drought conditions in
different parts of the world. This shows the link between
albedo and vegetation cover (Hu et al., 2000). It is also
indicated by Bounoua et al. (2000) that NDVI affects cli-
mate by redistributing the surface energy fluxes and creat-
ing cooler near-surface climate conditions. Cognizant of
the potential impact of the local albedo and vegetation
cover on drought by affecting surface temperature,
Albedo (Modern-Era Retrospective analyses for Research
and Applications (MERRA) and MODIS Terra-aqua 8-
day surface reflectance products (MCD43A)) and NDVI
(AVHRR and Terra Moderate Resolution Imaging
Spectroradiometer (MOD13Q1)) data were obtained for
the years 1982 to 2016 on a maximum of one-month tem-
poral resolution and used for analyses.

3.4. Data analyses

3.4.1. Drought analyses. All the monthly gridded CRU
TS 4.01 data (1982 to 2016) were averaged to represent
the climate data of the study area. The time-series data
was then used to automatically calculate the Standard
Precipitation and Evapotranspiration Index (SPEI), at
different time scales, using the ‘SPEI’ package in R statis-
tical software. SPEI developed by Vicente-Serrano et al.
(2010) was chosen over SPI (Standard Precipitation
Index) because it includes temperature changes as part of
its analyses (Lweendo et al., 2017). The inclusion of
Potential Evapotranspiration (PET) makes a discernible
difference in index values and is then recommended as an
alternative to SPI to quantify anomalies in accumulated
climate water balance, incorporating potential evapo-
transpiration (Stagge and Tallaksen, 2014).

In the presence of a monthly climate data for a loca-
tion, the SPEI can be calculated on 1, 2, 3, 6, 12, 24,
48… months depending upon the time scale of interest
(Edwards and McKee, 1997). According to Svoboda et
al. (2012), groundwater, streamflow and reservoir storage
reflect the longer-term precipitation variances.
Differently, soil moisture conditions respond to precipita-
tion variances on a relatively short timescale.
Accordingly, 1-month SPEI was used to characterize the
meteorological drought, 3-month to 6-month SPEI for
agricultural drought, and 12-month to 24-month SPEI
for hydrological drought.

3.4.2. Trend analyses. Trend analyses refer to the quan-
tification of patterns over a specific period of time. A
trend can also take various forms, such as increasing,
decreasing, or periodic (cyclic). According to the
Interstate Technology Regulatory Council (2013), detect-
ing and assessing temporal and spatial trend is important
for many environmental studies and monitoring
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programs. Before looking for a trend, however, testing
for randomness is important to identify the presence or
absence of a trend in a time series data (Ayoade, 2008).
Different techniques of randomness tests are thoroughly
discussed by Wang (2003), Biswas et al. (2014).
According to Wang (2003), all techniques have their own
strength and weakness. However, Wald-Wolfowitz Run’s
test of randomness proved to be from among the stron-
gest randomness test techniques such as the Mann-
Kendall test and the Bartels’ rank test. Thus, all the time
series data on SPEI and the causal factors were tested for
randomness using Wald-Wolfowitz Run’s test method in
Eq. (1) computed based on the number of runs above
and below the median as a reference value. Time series
data with Run’s test (Z) values falling within 61:96 were
regarded as random, hence no trend. Contrarily, Z value
falling outside of the range were considered non-random.
Finally, for the non-random time series data, the correl-
ation coefficient was used to further understand the
strength and direction of the trend.

Z ¼ r� n
2�1ffiffiffiffiffiffiffiffiffiffiffi
n2�2n
4 n�1ð Þ

q (1)

Where Z is a test of randomness, r is the number of
runs, and n is the sample size.

3.4.3. Regression analyses. To identify the major
drought causal factors in the study area, multiple linear
regression analyses (Eqs. (2) and (3)) was used on SPEI
as a dependent variable and the two local factors (vegeta-
tion cover and albedo) and six global factors (SSTAs
for the tropical Indian Ocean, tropical Atlantic Ocean,
tropical Pacific Ocean, Red Sea, Nino 3.4 and SOI) as
independent variables. The analyses was carried out at 1-
month, 3-month, 6-month, 12-month and 24-month time
scales. These time scales were selected to represent the
meteorological, agricultural and hydrological drought
conditions defined by WMO (2012). However, before the
variables were considered for the multiple linear

regression analyses, they had to be checked for multicolli-
nearity by calculating correlation coefficients for all pairs
of predictor variables. A stepwise multiple linear regres-
sion method was, then, used to identify the statistically
significant predictive variables automatically.

Ŷ ¼ b1X1 þ b2X2 þ :::þ bnXn (2)

whereby

b1 ¼
cyx1�ðcyx2Þðcx1x2Þ

1� ðcx1x2Þ2
; b2 ¼

cyx2�ðcyx1Þðcx1x2Þ
1� ðcx1x2Þ2

bn is beta coefficient showing the performance of depend-
ent variable’s (n) contribution, c is correlation coefficient
and Xn is the independent variable,r is the standard
deviation.

Y ¼ aþ b1x1 þ b2x2 þ ::::þ bnxn (3)

where by

a ¼ ̄y �
Xn

i¼1
bi ̄x1ð Þ; b1 ¼ b1

ry
rx1

; b2 ¼ b2
ry
rx2

Moreover, f-test (Eq. (4)) was used to test the signifi-
cance level of the correlation coefficient.

FCalculated ¼ R2 n�k�1ð Þ
k 1�R2ð Þ (4)

Where k is the number of predictors, R is the correl-
ation coefficient and n is the number of samples.

4. Results

4.1. Drought occurrence

The run’s test results in Table 1 show below �1.96 z val-
ues at all time scales investigated, indicating a non-ran-
dom occurrence of drought in the study area. The results
also show a significant (p< 0.01) increasing drought trend
at all investigated time scales for the period 1982 to 2016.
Negative correlation values normally represent a decreas-
ing trend. However, this can also be interpreted as an
increasing deviation in the linear relationship between the
two variables, SPEI and time. Hence, the negative values
here represent decreasing SPEI values (i.e. the negative
SPEI values became smaller with time) as the time in
years increased from 1982 to 2016. This, thus, indicates
an increase in drought occurrence over time as illustrated
in Fig. 3.

4.2. Global factors

The trend analyses result for the global causal factors
presented in Table 2 indicate a significant (p< 0.01)
increasing trend in SOI and SSTAs of tropical Indian
Ocean, tropical Atlantic Ocean, tropical Pacific Ocean

Table 1. Test of randomness and the product-moment
correlation coefficient values representing the trend of drought
conditions in Tigray region at 1-month, 3-month, 6-month, 12-
month and 24-month time scale (1982–2016).

Time scale
Run’s
test (z)

Correlation
coefficient (r) p-value

1-month �4.01 �0.274�� 0.000
3-month �12.21 �0.330�� 0.000
6-month �15.24 �0.335�� 0.000
12-month �17.29 �0.367�� 0.000
24-month �19.25 �0.472�� 0.000

��
Correlation is significant at the 0.01 level (2-tailed).
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and the Red Sea region (see Fig. 4), at all investi-
gated timescales.

Differently, the SSTAs in the Nino 3.4 region did not
show any significant trend at all investigated time scales.
With the exception to Nino 3.4, the correlation coefficient
values of all global causal factors increased as the time
scale increased from 1-month to 24-months with the SOI
correlation value (rSOI ¼ 0.18, 1-month time scale) being
the smallest and the tropical Indian Ocean correlation
value (rIndian-Ocean ¼ 0.86, 24-month time scale) being the
highest. The temporal patterns of global causal factors
are presented in Figs. 5 and 6.

4.3. Local factors

NDVI and albedo were considered as potential local
causal factors of drought in the study area. Unlike the
global causal factors and albedo, however, the trend anal-
yses test on NDVI showed a significant (r1 ¼ 0.59, r3 ¼

0.66, r6 ¼0.76, r12 ¼ 0.88, r24 ¼ 0.89; p< 0.01) increasing
trend at all investigated time scales between 1982 and
2016 (see Table 2). Figure 6 shows that the NDVI values
were low between the years 1982 and 1998. However, the
values spiked starting in 1999 and continued with no sign
of dropping to previous values. On the contrary, the tem-
poral trend of albedo was characterized by a significant
decreasing trend (r1 ¼ �0.75, r3 ¼ �0.78, r6 ¼ �0.81, r12
¼ �0.85, r24 ¼ �0.87; p< 0.01). It is also indicated in
Fig. 7 that the reflectivity of the surface remained high
and fairly constant between 1982 and 1998. The reflectiv-
ity exhibited a sharp decline in 1999 and remained low
until 2016.

4.3.1. Zero-time-lag correlation and regression analyses.
It is shown in Table 3 that negative significant linear cor-
relation existed between SPEI and the investigated global
and local factors, with exception to the SSTA in the
Nino 3.4 region, SOI and Albedo at all investigated time

Fig. 3. Temporal pattern of SPEI at 1-month, 3-month, 6-month, 12-month and 24-month time scales (1982 to 2016).
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scales. The linear correlation between SPEI and SSTAs at
the Nino 3.4 was significant only at 6-month (r ¼ �0.1,
p¼ 0.043) and 12-month (r ¼ �0.148, p¼ 0.003) time
scales. Similarly, the correlation coefficient between
SPEI and SOI was significant at all time scales except at
12-month time scale (r ¼ �0.041, p¼ 0.413). The linear
relationship between SPEI and Albedo, however, was sig-
nificant but positive at all investigated time scales.
Moreover, the strongest linear relationship was observed
between SPEI and the tropical Indian Ocean followed by
the tropical Atlantic Ocean at all investigated time scales
at p< 0.01 (Table 3).

For the stepwise multiple linear regression analyses,
factors which only correlated with SPEI at p< 0.05 were
included as an input. Thus, the Nino 3.4 SSTA (at 1-
month, 3-month, and 24-month time scale) and SOI (at
12-month time scale) were excluded from the analyses.
Moreover, the NDVI and Albedo factors were excluded
as drought causing factors because of their inverse rela-
tionship with SPEI. On these bases, the stepwise multiple
linear regression analyses was carried out and, thus, the
SSTA in the tropical Indian Ocean alone was identified
as drought influencing factor at 1-month and 6-month
time scales accounting for only 5.8% and 8% of the varia-
tions in SPEI, respectively (see Fig. 8a and c).

At 3-month, 12-month and 24-month time scales, how-
ever, other global factors were also found to have signifi-
cant (p< 0.01) influence on the SPEI of their
corresponding time scales. SSTAs in the tropical Indian
Ocean along with the SSTA in the tropical Atlantic
Ocean were able to describe 9% of the variation in SPEI
at 3-month time scale (Fig. 8b). At 12-month time scale,
however, the SSTAs in the Tropical Indian Ocean, Red
Sea, Tropical Atlantic Ocean and the Nino 3.4 region
were identified as drought influencing factors accounting
for 16.1% of the variation in SPEI (Fig. 8d). Similarly,
the 24-month time scale SSTAs in the tropical Indian
Ocean, Red Sea, the SOI and the SSTA in the tropical
Pacific Ocean were able to explain the variation in SPEI
by 31.1% (Fig. 8e).

4.3.2. Time-lagged correlation and regression analyses.
The correlation coefficient values for lagged SPEI and
the global and local causal factors are presented in Table
4. Similar to the zero-time-lag correlation, the linear rela-
tionship with the tropical Indian Ocean was higher at all
time scales investigated than the other factors. SSTAs at
the tropical Indian Ocean showed significant (p< 0.01)
negative correlation with the lagged SPEI at �0.24,
�0.30, �0.28, �0.34 and �0.48 at 1-month, 3-month, 6-
month, 12-month and 24-month time scales respectively.

In a much similar way with the zero-time-lag analyses,
factors significantly correlated with SPEI at p< 0.05 wereT
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Fig. 4. Map of sampled tropical Indian Ocean, tropical Atlantic Ocean, tropical Pacific Ocean, the Red Sea and Nino 3.4 regions (12-
month average global SSTAs for the period 1982 to 2016).

Fig. 5. Running means of the sea surface temperature anomalies for the (a) tropical Indian Ocean, (b) tropical Atlantic Ocean, (c)
tropical Pacific Ocean and (d) Red Sea region on 1-month, 3-month, 6-month, 12-month and 24-month basis.
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included as an input for analyses. Hence, SSTAs of the
Nino 3.4 region were included as an input in the regres-
sion model only at 6-month (r ¼ �0.097, p¼ 0.048) and
12-month (r ¼ �0.166, p¼ 0.001) time scales. The SOI
was also excluded as a factor at 6-month (r ¼ �0.073,
p¼ 0.136) and 12-month (r ¼ �0.021, p¼ 0.667) time
scales. The small correlation could arise due to the high
sample size that could result in a higher likelihood of
obtaining a very low correlation coefficient. Additionally,
the NDVI and Albedo were excluded as inputs because
of their inverse relationship with the SPEI.

At 3-month and 6-month time scales, only SSTAs in
the tropical Indian Ocean was identified as a statistically
significant drought influencing factor significant at
p< 0.01. It was observed that about 9.2% and 8.2% of
the variation in the 3-month and 6-month lagged SPEI
were accounted for by the changes in SSTAs in the trop-
ical Indian Ocean alone (Fig. 9b and c). However, at 12-
month time scale, SSTAs in the tropical Indian Ocean,
Red Sea, tropical Atlantic Ocean and Nino 3.4 region
were identified as influencing factors of drought in the
study area. At this time scale, the identified factors
accounted for 16.5% of the variation in SPEI significant
at p< 0.01 (See Fig. 9d).

The analyses result also revealed the influence of
SSTAs in the tropical Indian Ocean, Red Sea, SOI
and tropical Pacific Ocean on the time-lagged SPEI at
24-month time scale. All the identified factors were
able to describe 30.4% of the variation in SPEI (Fig.
9e). It was also observed that the R-squared value
between time-lagged SPEI and the identified factors
increased with time scale. The values increased from
0.067 at 1-month time scale to 0.304 at 24-month
time scale.

5. Discussion

5.1. Trend of drought

The analyses result on regional drought occurrence indi-
cates a significant increasing trend of drought at all inves-
tigated time scales during the 1982 to 2016 analyses
period. This finding was in agreement with (El Kenawy
et al., 2016) which reported an increasing trend of
drought occurrence in Ethiopia since 1982.

5.2. Trend of global and local factors

This study shows that the SSTAs in the tropical Indian
Ocean increased significantly between 1982 and 2016 at
all investigated time scales. This result was in agreement
with (Deser et al., 2010), which reported a positive signifi-
cant trend of SST changes in all tropical Oceanic surfa-
ces, between 1900 and 2008, except for the North
Atlantic Ocean. Another study by Levitus et al. (2000)
reported warming of the Pacific Ocean starting the 1950’s
while the Indian Ocean did some years later starting the
mid-1960s. The result was also confirmed by Cane et al.
(1997) referring that the increasing zonal sea surface tem-
perature changes as good evidence for global warming.
However, the warming of the global oceanic surfaces is
not limited to the Indian and Pacific Oceans only.
Chaidez et al. (2017) reported an increasing surface tem-
perature in one of the warmest seas, the Red Sea. Similar
researchs in the Red Sea by Raitsos et al. (2011),
Nandkeolyar et al. (2013) also revealed the warming of
the Red Sea which started in the mid-1990s with another
abrupt leap in 1994. Additionally, this study found the
highest warming trend in the tropical Indian Ocean fol-
lowed by the tropical Atlantic Ocean and the Red Sea at
all investigated time scales. The same observation was

Fig. 6. Running means of the (a) Nino 3.4 region surface temperature anomaly and (b) Southern Oscillation Index (SOI) on 1-month,
3-month, 6-month, 12-month and 24-month basis.
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Fig. 7. Temporal pattern of average NDVI and Albedo at 1-month, 3-month, 6-month, 12-month and 24-month time scales.

Table 3. Correlation coefficient (r) values between zero-lag SPEI and the local and global climate controlling factors at 1-month, 3-
month, 6-month, 12-month and 24-month time scales for the period 1982 to 2016.

Climate control factors 1-month p-value 3-month p-value 6-month p-value 12-month p-value 24-month p-value

Tropical Indian Ocean (SSTA) �0.242�� 0.000 �0.280�� 0.000 �0.282�� 0.000 �0.340�� 0.000 �0.490�� 0.000
Tropical Atlantic Ocean (SSTA) �0.208�� 0.000 �0.269�� 0.000 �0.247�� 0.000 �0.302�� 0.000 �0.413�� 0.000
Tropical Pacific Ocean (SSTA) �0.153�� 0.002 �0.178�� 0.000 �0.200�� 0.000 �0.268�� 0.000 �0.328�� 0.000
Red Sea (SSTA) �0.140�� 0.004 �0.172�� 0.000 �0.135�� 0.006 �0.133�� 0.007 �0.207�� 0.000
Nino 3.4 (SSTA) 0.021 0.672 �0.016 0.739 �0.100� 0.043 �0.148�� 0.003 �0.076 0.129
SOI �0.115� 0.018 �0.143�� 0.003 �0.098� 0.046 �0.041 0.413 �0.165�� 0.001
NDVI �0.196�� 0.000 �0.244�� 0.000 �0.263�� 0.000 �0.283�� 0.000 �0.374�� 0.000
Albedo 0.117� 0.017 0.179�� 0.000 0.208�� 0.000 0.287�� 0.000 0.390�� 0.000

�
Correlation is significant at the 0.05 level (2-tailed).

��
Correlation is significant at the 0.01 level (2-tailed).
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made by Servain (1991), Cardinal et al. (2010), Lin and
Li (2012) which reported similar increasing linear trend in
SST in the tropical Indian Ocean and the tropical

Atlantic Ocean. However, the smallest increasing linear
trend was observed in the tropical Pacific Ocean.
According to Cane et al. (1997), Hoell and Funk (2013),

Fig. 8. Scatter plots showing the zero-time-lag observed SPEI against predicted SPEI values at (a)1-month, (b) 3-month, (c) 6-month,
(d) 12-month and (e) 24-month time scales.

Table 4. Correlation coefficient (r) values between time-lagged SPEI and the local and global climate controlling factors at 1-month, 3-
month, 6-month, 12-month and 24-month time scales for the period 1982 to 2016.

Climate control factors 1-month p-value 3-month p-value 6-month p-value 12-month p-value 24-month p-value

Tropical Indian Ocean (SSTA) �0.240�� 0.000 �0.303�� 0.000 �0.286�� 0.000 �0.344�� 0.000 �0.486�� 0.000
Tropical Atlantic Ocean (SSTA) �0.221�� 0.000 �0.253�� 0.000 �0.248�� 0.000 �0.300�� 0.000 �0.403�� 0.000
Tropical Pacific Ocean (SSTA) �0.171�� 0.000 �0.217�� 0.000 �0.219�� 0.000 �0.278�� 0.000 �0.332�� 0.000
Red Sea (SSTA) �0.137�� 0.005 �0.153�� 0.002 �0.142�� 0.004 �0.136�� 0.006 �0.202�� 0.000
Nino 3.4 (SSTA) 0.030 0.538 0.001 0.982 �0.097� 0.048 �0.166�� 0.001 �0.087 0.082
SOI �0.111� 0.024 �0.139�� 0.004 �0.073 0.136 �0.021 0.667 �0.149�� 0.003
NDVI �0.148�� 0.003 �0.198�� 0.000 �0.216�� 0.000 �0.273�� 0.000 �0.365�� 0.000
Albedo 0.143�� 0.003 0.175�� 0.000 0.206�� 0.000 0.281�� 0.000 0.381�� 0.000

�
Correlation is significant at the 0.05 level (2-tailed).

��
Correlation is significant at the 0.01 level (2-tailed).
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Kidwell et al. (2017) it is possible for this situation to
arise from the variability between the cooling and warm-
ing trends of the eastern and the western equatorial
pacific zones in relation to ENSO events.

Although no agreement on the starting period of the
warming events was found, this study generally agreed
with the research findings and have captured the warming
trends in the tropical Indian Ocean, tropical Atlantic
Ocean, tropical Pacific Ocean and the Red Sea. Unlike
any other oceanic surfaces in the tropical region, how-
ever, this study found no trend of sea surface temperature
anomalies in the Nino 3.4 region at all time scales investi-
gated, except at 6-month time scale. Hence, the absence
of a trend in SSTA in the Nino 3.4 region could attribute
to the non-cyclic nature of ENSO events.

The Southern Oscillation Index (SOI) has been used as
a predictor of climatic variables, such as rainfall

(Suppiah, 2004) and temperature, and is related to the El
Nino and La Nina phenomena (Eso et al., 2016). This
study has found a weak positive SOI trend, significant
(p< 0.01) at all investigated time scales between 1982 and
2016. This is in agreement with Pant and Parthasarathy
(1981), McLean et al. (2009) which demonstrated for the
absence of any appreciable SOI’s long term trend because
of its oscillating nature with an irregular period of 3 to
5 years. This was also further supported by Eso et al.
(2016). According to this particular research, the analyses
result, which was conducted by dividing the cumulative
data from 1876 to 2014 into 4 periods, showed increased
SOI at the first period from 1876 to 1919. The SOI for
the years 1920 to 1975 also showed an increasing trend,
followed by a decreasing trend between the years 1976
and 1995. However, no trend was observed during the
1996 to 2014 period.

Fig. 9. Scatter plots showing the time-lagged observed SPEI against predicted SPEI values at (a)1-month, (b) 3-month, (c) 6-month,
(d) 12-month, (e) 24-month time scales.
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The trend test for local causal factors including NDVI
and albedo show statistically significant high trend values
which are opposite to each other. NDVI showed a statis-
tically significant positive trend, while albedo showed the
same statistically significant but negative trend in all of
the investigated time scales. A similar statistically signifi-
cant positive trend in monthly maximum NDVI was
reported by Herrmann et al. (2005) over a large portion
of the Sahel region between 1982 and 2003. The decreas-
ing trend of albedo is accounted by the increasing vegeta-
tion cover in the study area. Albedo increases with
decreasing vegetation (Lofgren, 1995; Fuller and Ottke,
2002; Benas and Chrysoulakis, 2014). Hence, a decreasing
pattern is expected in areas where the vegetation cover
improves. In this study, the trends in NDVI and albedo
are classified into two distinctive periods. The period of
below-average NDVI (i.e. from 1982 to 1998), and the
period of above-average NDVI (i.e. from 1999 to 2016).
However, the periods for below (1999–2016) and above
(1982–1998) average albedo is quite the reverse to NDVI.
These results show closer resemblance with the Sahelian
below average (1982–1993) and above-average
(1994–2003) NDVI values (Anyamba and Tucker, 2005).
The NDVI and albedo values showed abrupt change
starting in 1999 and remained fairly constant until 2016
with no significant decreasing or increasing signs.
Rasmussen et al. (2001) suggested that constant vegeta-
tion changes in semi-arid regions could be in response to
changes in climate trend and human impacts. Various
researches assessing land use and land cover change have
been carried out in the study area that show the same
increasing trend in vegetation cover (Munro et al., 2008;
Kiros, 2014; Belay et al., 2015). However, a research
work in Kilte Awlaelo district by Tilahun et al. (2015)
reported a decreasing trend of vegetation between 1972
and 2014. According to Kiros (2014), the vegetation
cover in the study area increased between 1995 and 2014
mainly due to the increasing rehabilitation practices.

Moreover, the land tenure system from 1975 to 1990
has resulted in fragmentation of landholdings and tenure
insecurity which resulted in lack of appropriate land use,
further intensifying land degradation. The 1995 constitu-
tion came up with property rights that vested the state
and the people followed by the new proclamation of
1997. The proclamation again transferred the land admin-
istration authority to the regional state and the people to
own land and its natural resources (Nega et al., 2003;
Teka et al., 2013). Moreover, according to Teka et al.
(2013), three major natural resource management policies
(i.e. Ethiopian Forestry Action Programme in 1994,
Tigray Forestry Action Programme in 1996 and
Ethiopia’s Environmental policy in 1997) has been devel-
oped to reduce land degradation through improved

vegetation cover. Hence, these changes in ownership and
natural resource management policies could have
impacted the vegetation cover, thus, explain the low
NDVI and high Albedo values during 1982 to 1998; and
the increased vegetation cover and decreased surface
reflectivity from 1999 to 2016.

5.3. Linear relationship between SPEI and
causal factors

The SSTA in the tropical Indian Ocean was identified as
a major drought causal factor at 1-month, 3-month and
6-month timescales. At 12-month time scale, however,
both the zero-time-lag and time-lagged SSTAs in the Red
Sea region, tropical Atlantic Ocean, and Nino 3.4 region
played a crucial role as climate control factors affecting
drought conditions in the study area in addition to the
SSTAs in the tropical Indian Ocean. Differently, the SOI
and SSTA in the tropical Pacific Ocean were identified as
major drought causing factors at 24-month time scales
along with the SSTAs in the tropical Indian Ocean and
the Red Sea region. This, thus, indicates the consistent
role of the tropical Indian Ocean in defining the drought
conditions in the study area.

According to Lu (2009), the tropical Indian Ocean has
warmed significantly during the second half of the twenti-
eth century affecting the Sahelian precipitation negatively.
Consistent warming of the tropical Indian Ocean has also
been observed in the 1998 to 2002 droughts in the United
States, southern Europe, and southwest Asia (Hoerling
and Kumar, 2003). Rigorous studies on the influence of
SST changes in the tropical Indian Ocean on the east
African climate have been made by Mutai and Ward
(2000), Ummenhofer et al. (2009), Segele et al. (2015),
Appelhans and Nauss (2016). In line with our findings,
these studies demonstrated the effect of SST changes on
the east African climate by influencing the zonal pressure
gradient and the surface wind component in the region.
Shanko and Camberlin (1998) also confirmed that the
SST changes over the western Indian Ocean is associated
with the drought occurrences in Ethiopia. Moreover,
shreds of evidence by Zolina et al. (2017) show the effects
of the SST changes in the Red Sea region on the parts of
east Africa by affecting the received precipitation.

This study also found a positive significant relationship
between NDVI and drought occurrences in the study
area. Various researches have been done on the impact
that climate change has on vegetation change (Li and
Guo, 2012; Chuai et al., 2013; Yuan et al., 2015; Ning
et al., 2015). Conversely, studies examining the impact of
vegetation cover on climate through their influence on
the atmospheric temperature, humidity, cloud cover and
precipitation at various scales (Mahmood et al., 2014;
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Sentian and Kong, 2015; Laux et al., 2017) are also
widely available. Vegetation, in general, provides numer-
ous ecosystem services, many of which influence the cli-
mate systems directly or indirectly (Pielke et al., 2002).
However, the degree to which the land cover changes
affect the climate system depends on the type of land
cover conversion (Sertel et al., 2011).

In this study, the trend of vegetation change was posi-
tively correlated with the drought occurrences. For vege-
tation cover change to be considered as a drought
controlling factor, its link with drought should be nega-
tive. The increasing vegetation pattern should have
resulted in decreasing drought pattern over time.
However, the trend analyses results show that drought
trend and the vegetation change increased over time.
Unlike the vegetation cover, a decreasing trend in albedo
was observed. As a result, vegetation cover and the
albedo were ruled out as a drought causal factors in the
study area.

6. Conclusion

In this study, six global factors (SSTAs of tropical Indian
Ocean, tropical Atlantic Ocean, tropical Pacific Ocean,
Nino 3.4 region, the Red Sea and the atmospheric pres-
sure based SOI) and two local factors (Albedo and
NDVI) were examined as potential factors influencing the
variation in drought occurrences in the study area. Each
factor was examined for any increasing or decreasing
trend using the Wald-Wolfowitz Run’s test method. The
results indicate that five out of the six global factors
showed a statistically significant increasing trend between
1982 and 2016. No appreciable significant linear trend
was observed for the SSTA in the Nino 3.4 region.
NDVI increased significantly while Albedo decreased
between 1982 and 2016. The increasing trend of the five
global factors was in agreement with the increasing trend
of drought at all investigated time scales. However, the
magnitude of drought increment was not equivalent to
the magnitude that the causal factors increased through
the years. Since multicollinearity was observed between
the independent factors, a stepwise multiple linear regres-
sion was used to identify the factors functionally related
to the variation in drought occurrences in the study area.
Moreover, NDVI and Albedo were excluded as drought
causal factors due to the reverse linear relationship with
the drought trend.

In general, this study has found the significant role of
the tropical Indian Ocean in determining the drought
conditions of the study area at all time scales investi-
gated. The SSTAs in the tropical Atlantic Ocean, tropical
Pacific Ocean, the Red Sea and Nino 3.4 regions also
played a statistically significant role in drought

occurrences in the study area besides to the SSTAs in the
tropical Indian Ocean. Moreover, the SOI was identified
as one of the drought affecting factors only at 24-month
time scale. Hence, this implies that SSTA in the tropical
Indian Ocean can be used to predict droughts in the
study area for shorter time periods including 1-month, 3-
month and 6-month time scales. For longer periods, the
SSTAs of the tropical Indian Ocean combined with the
SSTAs of the tropical Atlantic Ocean, tropical Pacific
Ocean, the Red Sea and Nino 3.4 region and SOI should
be used to predict drought occurrences with higher preci-
sion than the shorter time scales. However, it should also
be noted that the influence of the identified drought
causal factors is small, hence indicating the need for fur-
ther assessment of other potential drought causal factors
both at the local and global scale.
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