
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=zela20

Tellus A: Dynamic Meteorology and Oceanography

ISSN: (Print) 1600-0870 (Online) Journal homepage: https://www.tandfonline.com/loi/zela20

Assimilation of semi-qualitative sea ice thickness
data with the EnKF-SQ: a twin experiment

Abhishek Shah, Laurent Bertino, François Counillon, Mohamad El Gharamti
& Jiping Xie

To cite this article: Abhishek Shah, Laurent Bertino, François Counillon, Mohamad El Gharamti
& Jiping Xie (2020) Assimilation of semi-qualitative sea ice thickness data with the EnKF-
SQ: a twin experiment, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-15, DOI:
10.1080/16000870.2019.1697166

To link to this article:  https://doi.org/10.1080/16000870.2019.1697166

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 14 Dec 2019.

Submit your article to this journal 

Article views: 504

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=zela20
https://www.tandfonline.com/loi/zela20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/16000870.2019.1697166
https://doi.org/10.1080/16000870.2019.1697166
https://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/16000870.2019.1697166
https://www.tandfonline.com/doi/mlt/10.1080/16000870.2019.1697166
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2019.1697166&domain=pdf&date_stamp=2019-12-14
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2019.1697166&domain=pdf&date_stamp=2019-12-14


Assimilation of semi-qualitative sea ice thickness data
with the EnKF-SQ: a twin experiment

By ABHISHEK SHAH1�, LAURENT BERTINO1, FRANÇOIS COUNILLON1, MOHAMAD EL
GHARAMTI2, and JIPING XIE1, 1Nansen Environmental and Remote Sensing Center, Bergen,

Norway; 2National Center for Atmospheric Research, Boulder, CO, USA

(Manuscript Received 24 April 2019; in final form 18 September 2019)

ABSTRACT
A newly introduced stochastic data assimilation method, the Ensemble Kalman Filter Semi-Qualitative
(EnKF-SQ) is applied to a realistic coupled ice-ocean model of the Arctic, the TOPAZ4 configuration, in a
twin experiment framework. The method is shown to add value to range-limited thin ice thickness
measurements, as obtained from passive microwave remote sensing, with respect to more trivial solutions like
neglecting the out-of-range values or assimilating climatology instead. Some known properties inherent to the
EnKF-SQ are evaluated: the tendency to draw the solution closer to the thickness threshold, the skewness of
the resulting analysis ensemble and the potential appearance of outliers. The experiments show that none of
these properties prove deleterious in light of the other sub-optimal characters of the sea ice data assimilation
system used here (non-linearities, non-Gaussian variables, lack of strong coupling). The EnKF-SQ has a
single tuning parameter that is adjusted for best performance of the system at hand. The sensitivity tests
reveal that the tuning parameter does not critically influence the results. The EnKF-SQ makes overall a valid
approach for assimilating semi-qualitative observations into high-dimensional nonlinear systems.

Keywords: semi-qualitative observations, range limitation, SMOS, ice thickness; TOPAZ4, EnKF-SQ

1. Introduction

Sea ice plays a crucial role in the Arctic climate as it
modulates the exchange of heat and moisture between the
ocean and the atmosphere (Aagaard and Carmack, 1989;
Screen and Simmonds, 2010). Different studies have
shown that accurate knowledge of the Sea Ice Thickness
(SIT) is beneficial for the Arctic sea ice predictability
(Day et al., 2014; Guemas et al., 2016; Collow et al.,
2015). The SIT observations from the European Space
Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)
mission are available in near-real time, at daily frequency
during the cold season (October-April). The retrieval
method for SMOS SIT observations is based on measure-
ments of the brightness temperature at a low frequency
microwave (1.4GHz, L-band: wavelength of 21 cm)
(Kaleschke et al., 2010). The representative depth for the
L-Band microwave frequency into the sea ice is about
0.5m for first-year level ice (Kaleschke et al., 2010;
Huntemann et al., 2014). After an initial study indicating
a limit at 0.5m, Tian-Kunze et al. (2014) developed a
novel iterative retrieval algorithm for SMOS SIT

observation, that is based on a thermodynamic sea ice
model and three-layer radiative transfer model, which
explicitly takes variations of ice temperature and ice salin-
ity into account. The newly developed algorithm can esti-
mate the ice thickness up to maximum of 1m depending
on the ice temperature and salinity. Few studies have
shown that assimilating thin SIT from SMOS into
coupled ice-ocean model, using ensemble based Data
Assimilation (DA) techniques, is able to improve the SIT
forecast without being detrimental to other properties
(e.g. Yang et al., 2014; Xie et al., 2016; Fritzner et al.,
2019). All of these studies, however, ignore the saturated
observations of thick ice.

Measurements of thick sea ice on basin-wide scales are
also available from laser altimeters onboard ICESat
(Forsberg and Skourup, 2005) or from radar altimeters
on the European Remote Sensing (ERS), Envisat,
CryoSat-2 and Sentinel-3 (Connor et al., 2009; Laxon
et al., 2013; Ricker et al., 2014). CryoSat-2 SIT is pro-
vided in near-real time (Tilling et al., 2016) but still con-
tains considerable large uncertainties caused by the lack
of auxiliary data on snow depth. These uncertainties are
proportionally larger for thin ice (i.e. <1m) and hence�Corresponding author. e-mail: abhishek.shah@nersc.no
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CryoSat-2 practically measures thick sea ice only. A
merged product of weekly SIT observations in the Arctic
from the CryoSat-2 altimeter and SMOS radiometer,
referred as CS2SMOS, has also been developed by com-
bining the two complementary datasets (Kaleschke et al.,
2015; Ricker et al., 2017) and made available during the
winter months since October 2010. However, the combin-
ation of the two satellites is not perfect as biases have
been revealed on overlapping areas (Wang et al., 2016;
Ricker et al., 2017). Recently, Xie et al. (2018) success-
fully assimilated the merged SIT product CS2SMOS into
the TOPAZ4 coupled ocean-sea ice reanalysis system
(Sakov et al., 2012) for the Arctic.

While assimilating a merged SIT map, rather than two
satellites data streams is practically convenient, the uncer-
tainty of the merged data is more difficult to quantify
and bad quantification of the uncertainty may affect the
assimilation performance negatively (Mu et al., 2018).1

The ability to use well-justified observation errors in data
assimilation is sufficiently important to motivate the
assimilation of the two separate SIT data streams rather
than one merged product. This implies that their detec-
tion limits should be taken into account by the data
assimilation method.

In DA, observations are used to reduce the error of
the state variables so that the forecast skill can be
enhanced. Many observations can only be retrieved
within a limited interval of the values that the observed
quantity would take in nature. In other words, observa-
tions may have a detection limit. One such example is the
aforementioned observation of SIT from SMOS.
Although, the SIT observations with detection limit do
not provide quantifiable data (hard data) above its detec-
tion limit, they do give qualitative information (soft
data). For instance, the ice could be thicker than a
known threshold. Studies from Shah et al. (2018) and
Borup et al. (2015) have shown that assimilating soft
data with linear and non-linear toy models using ensem-
ble-based DA methods have the potential to improve the
accuracy of the forecast. Therefore, not considering soft
data in the assimilation procedure is a potential loss of
meaningful information.

Assimilating only thin ice observations, as in Xie et al.
(2016, figures 5 and 6), induces a low bias, which is
caused by the partial nature of the observation of thin
ice. With a new method intended for semi-qualitative
data as the EnKF-SQ, the question arise whether this
bias can be mitigated or not? The comparison of the
EnKF-SQ to the perfect Bayesian solution (Shah et al.,
2018) shows that the EnKF-SQ analysis does not coincide
with the Bayesian posterior and bears inherent biases: in
the case of hard data, the Bayesian and EnKF-SQ poste-
riors are nearly the same. However, for out-of-range

observations and mode of a prior within the observable
range, only the maximum likelihood of the EnKF-SQ
analysis is preserved but its distribution is flatter than the
Bayesian solution with a thicker tail in the unobservable
range, so the expectation is too high. Based on this, the
EnKF-SQ is expected to be unbiased for thin SIT obser-
vations. Nevertheless, it should show a positive bias for
out-of-range observations. Further, the thicker tail of the
EnKF-SQ analysis distribution in the unobservable range
makes it relatively skewed, which is undesirable in a
Kalman filtering context.

In this study, we implement and test the overall per-
formance of the stochastic ensemble Kalman filter semi-
qualitative (EnKF-SQ) (Shah et al., 2018) in a twin
experiment where synthetic SMOS-like SIT observations,
with an upper detection limit, are assimilated into a
coupled ocean-sea ice forecasting system. The objective is
to test the potential of the EnKF-SQ for assimilating soft
data within a state of the art ocean and sea ice prediction
system, namely TOPAZ4. In addition, a number of sin-
gle-cycle assimilation experiments using the EnKF-SQ are
performed to investigate the sensitivity to the ensemble
size and out-of-range observation uncertainty.

This paper is organized as follows: Section 2 introduces
the main components of the TOPAZ4 system including
the model and the EnKF-SQ DA scheme used in the
assimilation experiments. In Section 3, the synthetic ice
thickness data are outlined together with the assimilation
setup. Section 4 discusses the results of the various
assimilation experiments. A general discussion of the
study concludes the paper in Section 5.

2. The TOPAZ system

2.1. Model setup

The ocean general circulation model used in the TOPAZ4
system is the version 2.2 of the Hybrid Coordinate Ocean
Model (HYCOM) developed at the University of Miami
(Bleck, 2002; Chassignet et al., 2003). The TOPAZ4
implementation of HYCOM uses hybrid coordinates in
the vertical, which smoothly shift from isopycnal layers in
the stratified open ocean to z level coordinates in the
unstratified surface mixed layer.

The HYCOM ocean model is coupled to a one-thick-
ness category sea ice model. The single ice thickness cat-
egory thermodynamics are described in Drange and
Simonsen (1996) and the ice dynamics use the Elastic-
Viscous-Plastic (EVP) rheology of Hunke and Dukowicz
(1997) with a modification from Bouillon et al. (2013).
The momentum exchange between the ice and the ocean
is given by quadratic drag formulas. The model has a
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minimum thickness of 10 cm for both new and melt-
ing ice.

The model domain covers the Arctic and North
Atlantic basins as shown in Fig. 1. The model grid is cre-
ated with conformal mapping (Bentsen et al., 1999) and
has a quasi-homogeneous horizontal resolution between
12�16 km in the whole domain. The grid has 880� 800
horizontal grid points.

2.2. The ensemble Kalman filter semi-qualitative,
EnKF-SQ

The EnKF-SQ (Shah et al., 2018) uses an ensemble of
model states to estimate the error statistics closely follow-
ing the stochastic EnKF algorithm (Burgers et al., 1998;
Evensen, 2004). The stochastic EnKF is a two-step filter-
ing method alternating forecast and analysis steps. In the

forecast step, the ensemble of model states is integrated
forward in time and when observations become available,
an analysis of every forecast member, xfi for i 2
1, 2, . . . ,N, is computed as follows:

xai ¼ xfi þ Kðyi�Hxfi Þ, (1)

K ¼ PfHTðHPfHT þ RÞ�1, (2)

where K is the Kalman gain matrix; xi is the ith ensemble
state member; H is the observation operator, mapping
the state variable to the observation space (could be non-
linear); R is the observation error covariance matrix; yi is
the ith perturbed observation vector generated from
Nðy,RÞ and Pf is the ensemble forecast error covariance
matrix. The superscripts a, f, and T stand for analysis,
forecast, and matrix transpose, respectively. In practice,
Pf is never computed explicitly and is instead decom-
posed as follows:

Fig. 1. The TOPAZ4 model domain. Background color shading shows the horizontal grid resolution (km) while solid black color
represents land.
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Pf ¼ 1
N � 1

XN
i¼1

ðxfi � �xf Þðxfi��xf ÞT , (3)

where �xf is the mean of the forecast ensemble.
The EnKF-SQ is intended to explicitly assimilate

observations with a detection limit. These are divided
into two categories depending on whether they are within
or outside the observable range. If the observed quantity
is within it, the quantitative (hard) data is assimilated as
in the stochastic EnKF, otherwise it is considered a quali-
tative (soft) data and treated differently. The observation
error std for hard data is a function of ice thickness as
discussed below in Section 3.1.

The specific value and error statistics of the out-of-
range (OR) observations are unknown. In order to
assimilate OR observations, an assumption needs to be
made about its likelihood. Following Shah et al. (2018), a
virtual observation is created at the detection limit and
then a two-piece Gaussian observation likelihood is con-
structed around it. A two-piece Gaussian distribution is
obtained by merging two opposite halves of two different
Gaussian probability density functions (pdfs) at their
common mode, given as follows:

f ðxÞ ¼ we�ðx�lÞ2=2r2
ir , x � l,

we�ðx�lÞ2=2r2
or , x>l,

(
(4)

where w ¼
ffiffi
2
p

q
ðrir þ rorÞ�1 is a normalizing constant, l is

the detection limit and also the common mode of two dif-
ferent normal distribution; rir and ror are in-range and
OR observation error standard deviations (std),
respectively.

Figure 2 is an illustration of a two-piece Gaussian
observation likelihood for OR SIT observations. On the
left hand side of the detection limit, it is assumed that rir,
inside the observable range, is defined by the observation
uncertainty of hard data at the detection limit. This is
because an observation could possibly fall outside the
detection limit, due to observation errors, even though its
true value is within the observable range. On the right
hand side, it is assumed that the ror (Eq. 5) in the unob-
servable range is defined with the help of a climatological
mean for SIT above the detection limit so that extremely
high values, which are usually less realistic, receive a
lower likelihood (Shah et al., 2018).

ror ¼
ðþ1

l

yfcðyÞdy
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Climatological mean

�l: (5)

fcðyÞ is the pdf of the climatological data of the observed
quantity. The two-piece Gaussian observation likelihood
for soft data is denoted, hereafter, by N 2pðl,r2

ir,r
2
orÞ:

The EnKF-SQ pre-processes the observations by sorting
them as either hard yh or soft ys. The observation errors
are assumed uncorrelated in space, i.e. R is diagonal.

Update step of the EnKF-SQ
For each forecast member xfi (i 2 1, 2, . . . ,N):

1. For each soft data ysj , check whether the observed
forecast ensemble member is within the observable
range or not.

2. If Hjx
f
i � l, set observation error variance Rj, j ¼ r2

ir

otherwise Rj, j ¼ r2
or implying that members inside

Fig. 2. Illustration of the two-piece Gaussian OR-observation likelihood for SMOS-like thin SIT. rir is an in-range and ror is the out-
of-range observation error standard deviations, respectively.
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(outside) the observable range are updated with data
parameterized using in-range r2

ir (out-of-range r2
or).

3. After looping over all soft data, compute the Kalman
gain Ki as in Eq. 2 with the updated observation
error covariance matrix R. For each xfi , a different
Kalman gain Ki is calculated.

4. Evaluate the ith analysis member xai as in Eq. 1 using
Ki: The perturbed observations are generated by
sampling from Nðyhj ,r2

hÞ and N 2pðl,r2
ir,r

2
orÞ2 for yhj

and ysj , respectively. r2
h is the observation error

variance for yhj :

Loop to next member i.
Repeating this process for all forecast members yields

the analysis ensemble. For a detailed description of the
EnKF-SQ, the reader is referred to Section 2 of Shah
et al. (2018).

3. Experimental setup

3.1. The synthetic sea ice thickness data

The synthetic SIT data used in this study is intended to
mimic the SIT data from the SMOS mission with an
upper detection limit. In order to evaluate the EnKF-SQ
method against a perfectly known truth, synthetic obser-
vations are generated using the coupled ocean and one-
thickness category sea ice model described earlier in
Section 2.1. A reference truth run (also called nature run)
is produced by integrating the coupled ocean sea ice
model from 1 January, 2014 to 31 December, 2015 using
unperturbed atmospheric forcing from ERA-Interim (Dee
et al., 2011). The run is initialized using member number
100 from the 100-member ensemble reanalysis of Xie
et al. (2017) on 31 December, 2013.

Synthetic SIT data are then generated for the duration
of the assimilation experiment from 11 November 2014
to 31 March 2015 by perturbing the truth with Gaussian
noise of zero mean and standard deviation robs; parame-
terized as:

robs ¼ 0:06tþ 0:05, (6)

where t is the truth for ice thickness in meters. The par-
ameterization is chosen such that observation errors
increase for thicker ice, which is a general behaviour of
positive-valued variables like SIT. The relationship is
obtained through regression of the absolute difference of
the daily averaged SIT between the aforementioned refer-
ence trajectory and reanalysis product (Xie et al., 2017)
on the reference truth from the month of December 2014
to January 2015. The resulting relationship (not shown
here) is linear with a positive slope. SIT observation error
represented in Eq. 6 is also qualitatively in line with those
used by Xie et al. (2016) for SMOS data.

In order to avoid any ambiguity and to have a simpli-
fied case of SMOS SIT detection limit, a single upper
detection limit of 1m is imposed on the generated SIT
observations, as an analogous for saturation of SMOS
data in thick sea ice. The SIT observations are assumed
available on every grid cell (except along the coastline)
and assimilated on a weekly basis. This is a reasonable
assumption as SMOS data comes with a grid resolution
of (�12:5 km), which is also the resolution of the
TOPAZ4 system. Model and observation grids are collo-
cated, thus our experiments neglect potential errors due
to interpolation, which is out of the scope of this study.

3.2. Out-of-range SIT climatology

A trivial alternative to the EnKF-SQ in the presence of
soft data would be to assimilate climatological data as
hard data. It is, therefore, worth investigating how benefi-
cial the assimilation of soft data with the EnKF-SQ is
compared to assimilating climatology.

The Arctic sea ice being in a declining phase, a climat-
ology of sea ice thickness represents a moving target. In
order to construct a climatology that is not drastically off
the conditions of the present experiment, we selected one
pragmatic compromise: a short two-year average from 2014
to 2015, which covers the experiment period and hence gives
a relatively accurate climatology. An out-of-range, location-
dependent, yearly SIT climatology is computed by taking a
time average of the truth (described earlier) for SIT above
the detection limit in each grid cell. Averaging is done from
January 2014 to December 2015, a period that includes two
summers and two winters and encompasses the assimilation
period. Even though the latter takes place in winter, the cli-
matology has a high bias because by construction it only
contains SIT above 1m. The observation error variance for
the climatological value is also location-dependent, equal to
the variance of all reference truth values above the detection
limit in the same grid cell.

3.3. Assimilation setup

In contrast to earlier TOPAZ4 studies that updated the
whole water column variables (Xie et al., 2018), here the
state vector x consists of only two sea ice variables: SIT
and sea ice concentration (SIC). This therefore constitutes
a case of a weakly coupled assimilation where the ocean
is only updated by dynamical re-adjustments from the sea
ice updates. Kimmritz et al. (2018), have shown that
while strongly coupled ocean and sea ice is clearly benefi-
cial, weakly coupled DA can still achieve reason-
able results.

In the analysis, sampling errors in the forecast error
covariance can give rise to spurious correlations between
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remote grid points, a problem which may become more
pronounced for smaller ensemble sizes (Houtekamer and
Mitchell, 1998). A common practice to counteract sam-
pling errors is to perform local analysis in which variables
at each grid cell are updated using only the observations
within a radius of influence ro around the grid cell
(Houtekamer and Mitchell, 1998; Evensen, 2003). For
simplicity, a single closest local observation within ro ¼
300 km is used here during the analysis.

In TOPAZ4, model error is introduced by increasing the
model spread via perturbing few forcing fields. The pertur-
bations are pseudo-random fields computed in a Fourier
space with a decorrelation time-scale of 2days and horizon-
tal decorrelation length scale of 250km, as described in
Evensen (2003). Perturbed variables include air temperature,
wind speeds, cloud cover, sea level pressure (Sakov et al.,
2012, Section 3.3) and yield curve eccentricity in the EVP
rheology (Hunke and Dukowicz, 1997, table 1). In addition,
precipitation is also perturbed with log-normal noise and
standard deviation of 100%. This affects the snowfall when
temperatures are below zero. Snow is an important thermal
insulator and therefore hampers sea ice growth/melt.

3.4. Target benchmarks

The performance of the EnKF-SQ is compared against
three different versions of the stochastic EnKF and a
Free run, denoted as follows:

1. EnKF-ALL: No detection limit is applied on SIT
observations thus even thick ice data from the
reference run is assimilated. This run acts as an upper
bound for performance because it is the only one that
assimilates out-of-range observations as hard data
with known statistics, which can be seen as cheating.

2. EnKF-CLIM: The SIT climatology with climatological
variance is assimilated instead of soft data.

3. EnKF-IG: Only hard data is assimilated and soft data
is ignored, similar to Xie et al. (2016). This run is
meant to assess the added value of the EnKF-SQ.

4. Free-run: The Free-run is the average of the 99
members without DA. It is run with perturbations,
contrarily to the aforementioned single-member
truth run.

To evaluate the performance of the different DA meth-
ods, we compute the root mean square error (RMSE) of
the ensemble mean at time t as:

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ð�xf
i, t � xri, tÞ2

s
, (7)

where xr and �xf is the n-dimensional reference (unper-
turbed truth) and mean of the prior state vector at time t,
respectively. We also monitor the average ensemble

spread (AES) for each filter, which we calculate at every
assimilation cycle as:

AESt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

r2
i, t

s
, (8)

where r2
i, t can either be the prior or posterior ensemble

variance at time t, respectively.

3.5. Ensemble size

In order to select the ensemble size, single-cycle assimila-
tion sensitivity experiments are conducted using EnKF-
SQ by varying the ensemble size between 2 and 99. The
resulting time-averaged RMSE and AES of the posterior
SIT estimates are displayed in Fig. 3. The plot indicates
that for N � 10, there is no significant difference in the
performance of the EnKF-SQ. This is mostly due to the
small size of the local state vector; consisting only of two
variables. An ensemble as small as 10 members is how-
ever less likely to succeed on the long term especially if
the number of state variable and observations increase.
Results from the other three EnKF runs (not shown)
showed the exact same behavior. Thus, the initial ensem-
ble is set as the first 99 members of the reanalysis ensem-
ble of Xie et al. (2016) on 31 December 2013. The initial
ensemble is then spun up from January, 2014 until the
start of the assimilation experiment (i.e. November 11)
with perturbed forcing to increase the variability. As
described earlier, member number 100 of the reanalysis
run was used to generate the truth in this study.

The assimilation framework is sub-optimal for few rea-
sons, in particular because of the weakly coupled updates.
Further, SIT errors are erroneously assumed Gaussian
while they are not. These sub-optimalities are not uncom-
mon in realistic applications. They do cause some limited
loss of performance but generally do not prevent us from
applying the EnKF.

In terms of computational resources, we used a single
processor on supercomputer for each of the four DA
methods. The total wall-clock time required by each ana-
lysis scheme, to update the SIT and SIC state variables
along with the IO operations, is approximately 6minutes
on a 1.4GHz Cray XE6. This is much less than the
TOPAZ4 one-week forward model run, for which each
member runs on 134 parallel processors in approxi-
mately 5minutes.

4. Assimilation results

4.1. Tuning the EnKF-SQ out-of-range likelihood

The out-of-range standard deviation ror is the only new
parameter introduced into the EnKF-SQ compared to the
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stochastic EnKF. Therefore, it is important to study how
the uncertainty in the estimate of ror affects the perform-
ance of the EnKF-SQ scheme. For this, we carried out a
number of single-cycle assimilation experiments by intro-
ducing a scalar multiplier a to Eq. 5 such
that r�

or ¼ a � ror:

RMSE and AES of the posterior SIT estimates are
plotted in Fig. 4 for a wide range of a, varying between
0.1 and 3.0. Such a range is very broad for most realistic
applications. a<0:4 strongly degrades the accuracy of the
EnKF-SQ along with significant decrease in the AES.
The large difference between RMSE and AES values,
indicate a possible filter divergence. This is because for
small a values, the sampling of a two-piece Gaussian like-
lihood for observation perturbations is prone to generate
samples concentrated around the detection limit, thus
pulling the analysis close to the detection limit, subse-
quently reducing the ensemble spread and increasing the
RMSE. As a approaches 1, the RMSE attains the min-
imum value and further becomes consistent with the
AES. When a increases beyond 2, large random samples
are occasionally drawn from the wide (fat tail) two-piece
OR likelihood and large perturbations are propagated to
the state vector through the Kalman gain, which eventu-
ally deteriorates the performance of the EnKF-SQ (with
larger analysis RMSE). Accordingly, in what follows we
set a¼ 1.

To illustrate how the EnKF-SQ updates the SIT by
assimilating range-limited SIT observations, we plot the

prior mean (Fig. 5a) and analysis increment (Fig. 5b) on
11 November 2014. The solid black line on both maps is
the isoline for 1m of SIT. The forecast places the thick
ice (up to 3m) north of Greenland and north-eastern part
of Canada. The increments are not only visible outside of
the 1m isoline but also inside the central Arctic region
where only soft data are assimilated. It is important to
notice that there is nearly zero increment in the central
Arctic region and the Beaufort sea where the sea ice is
thicker than 1.5m. This is because the EnKF-SQ analysis
do not impose strong updates on the prior if it is above
the detection limit and observations are out-of-range.

4.2. Performance assessment

Figure 6 shows the time evolution of the RMSE and
AES of the prior SIT estimates obtained using the
EnKF-ALL, EnKF-SQ, EnKF-CLIM, EnKF-IG and the
Free-run. The percentage of OR observations (to the
total number of observations) available at every cycle is
added to the plot. As expected, EnKF-ALL outperforms
all other schemes while EnKF-IG is the least accurate. It
should be noted that there is an increasing trend in the
RMSE, which is seasonally driven; a similar behavior
reported in Xie et al. (2016). Assimilating soft data with
the EnKF-SQ clearly improves the prior RMSE com-
pared to the EnKF-IG. This is consistent over the entire
assimilation period. The number of OR observations
gradually increases as the cold season intensifies leaving

Fig. 3. Time-averaged posterior RMSE and AES resulting from single cycle assimilation runs for different ensemble sizes using
EnKF-SQ.
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only a few hard data during the months of February and
March 2015. Even with a very limited number of hard
data, the EnKF-SQ outperforms EnKF-IG. On average
the EnKF-SQ improves the forecast accuracy by approxi-
mately 8% compared to the EnKF-IG. The RMSE result-
ing from the EnKF-CLIM is marginally higher than that
of the EnKF-SQ, except during the last three months of
the assimilation experiment. The reason for this could be

twofold: (i) In the early stages of the experiment, the cli-
matology tends to overestimate SIT due to the large sea-
sonal cycle compared to later months. This causes the
climatology to pull the update towards large values and
hence degrades the performance of the EnKF-CLIM. (ii)
Fewer hard data leads to larger RMSE values in the
EnKF-SQ as can be seen towards the end of winter and
start of the spring. Overall, the RMSE and AES show

Fig. 4. Time-averaged posterior RMSE and AES resulting from single cycle assimilation runs for a wide range of the multiplicative
factor a.

Fig. 5. (a) Prior ensemble mean of the ice thickness on 11 November 2014. The solid black line is the 1m SIT isoline. (b) The
increment (analysis-forecast) for SIT after incorporating the observations.
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Fig. 6. Left y-axis: Time evolution of the prior RMSE (solid lines) and AES (dashed lines) for SIT estimates. Right y-axis: The orange
asterisks represent the percentage of the out-of-range observations during assimilation resulting from the EnKF-SQ, EnKF-CLIM and
EnKF-IG.

Fig. 7. Maps of time-averaged prior RMSE for SIT obtained using: EnKF-ALL (top left), EnKF-SQ (top right), Free-run (center
left), EnKF-CLIM (bottom left) and EnKF-IG (bottom right). Averaging is done over the period of experiment, i.e. from November
2014 to March 2015.
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consistent ensemble statistics such that sufficient variabil-
ity is preserved in the system after cycling over time.

In order to visualize area-wise improvements, we plot
the map of time-averaged RMSE of the SIT prior esti-
mates in Fig. 7. The EnKF-ALL yields the best RMSE
throughout the entire region. Compared to the EnKF-IG,
the EnKF-SQ performs better in the central Arctic
region, Greenland’s north-eastern shelf, the Canadian
Arctic Archipelago and in the Beaufort Sea. On average,
the EnKF-SQ and EnKF-CLIM estimates are approxi-
mately 8% more accurate than those of the EnKF-IG.

The EnKF-CLIM, seems to produce larger improve-
ments than the EnKF-SQ specifically along the Ellesmere
island. However, it also increases the prediction error in
the Beaufort sea more than that of the EnKF-IG. A
number of reasons may explain this behavior. The climat-
ology being too high compared to the seasonal mean
yields an artificial increase of the model thickness, which
happens to agree with the truth along the Ellesmere
island. The recurrent update due to the assimilation of
climatology is propagated dynamically by the Beaufort
gyre into the Beaufort sea creating an anomaly compared
to the truth, which is not thicker.

The analysis algorithm of the EnKF-SQ is designed
such that improvements are expected mostly where SIT is
close to the threshold. As a way to examine this, we com-
puted the time-averaged RMSE of the prior SIT estimates
for different ice thickness intervals of 25 cm using all DA
schemes (Fig. 8). The values on the x-axis of Fig. 8

represent the upper bounds of each 25 cm SIT bin inter-
val except for the first bin of size 10 cm because of the
model 10 cm minimum thickness. The RMSE for all DA
schemes within each SIT bin is computed by finding the
location of grid cells for which the observations fall
within the bin interval.

Figure 8 suggests that RMSE values for all schemes
below 1m of SIT are approximately the same, as they all
assimilate hard data. If one excludes the EnKF-ALL
which is expected to be the most accurate, the EnKF-SQ
performs better in the range from 1m to 2m where the
assimilation of soft data clearly enhances the accuracy
compared to the EnKF-CLIM and EnKF-IG. A different
choice of climatology may have led to a different interval
of thickness but should still prove the EnKF-SQ advanta-
geous for thicknesses slightly above the threshold what-
ever the choice of climatology. The performance of the
EnKF-SQ is not as good as the EnKF-CLIM for thicker
ice, which can also be seen in Fig. 7 around the northern
coast of Greenland. It is worth noticing that even though
there is no data to assimilate for SIT > 1m in the EnKF-
IG scheme, it is performing better than the Free-run up
to 2.25m of SIT. This advantage has been previously
reported by Xie et al. (2016, see Fig. 8) and can be either
due to the reduction of the positive bias in the free run
(shown in Fig. 9) by assimilating thin ice only or due to
dynamical model adjustments after assimilation. In other
words, improvements to thin ice are propagated in time
to the period where ice gets thicker.

Fig. 8. Bar chart of time-averaged conditional prior RMSEs for SIT obtained using all tested DA schemes. Solid black line represents
time averaged Free-run RMSE. Black dashed line depicts the 1m detection limit. The x-axis denotes the SIT bins with bin size of 25 cm.
The values on x-axis are the upper bounds of the SIT for that particular bin.
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4.3. Bias and skewness analysis

The EnKF-IG updates the prior members by only assimi-
lating observations of thin ice with a maximum thickness
of 1m. This causes the algorithm to introduce negative
conditional bias for thick ice (knowing that the observation
is thin ice, the assimilation reduces the ice thickness more
than that it can thicken it). Similarly, the EnKF-SQ update
may introduce a bias towards the detection limit due to
assimilation of soft data and the EnKF-CLIM towards the
climatology. To investigate these likely biases in different
DA schemes, we present a bar chart of time-averaged con-
ditional bias for the posterior estimates of SIT in Fig. 9.
The conditional bias is calculated by finding the location of
the grid cells for which the observations fall within the SIT
bin interval. The positive values represent an overesti-
mation of SIT after the assimilation and vice versa.

The four DA runs exhibit a small negligible positive
bias of approximately 0.5 to 1 cm for thin ice. The Free-
run bias, on the other hand, is larger than �6 cm. Above
the threshold limit, there is a clear positive bias of 5 to
7 cm in the EnKF-CLIM posterior estimates, up until
2m. As seen earlier, the climatology tends to overestimate
the truth during the first few months of the experiment
when the ice is thin (red dotted line in Fig. 9). EnKF-IG
estimates, over the same interval, exhibit a small negative
bias, possibly left over from the conditional assimilation

of thin ice. It is important to note that there is almost
zero bias in the EnKF-SQ estimates, matching that of the
EnKF-ALL for 1 � SIT � 2 m. The magnitude by which
the climatology is overestimating the truth may vary
depending on the choice how one construct it, but none-
theless EnKF-SQ should still produce bias-free estimates
in the vicinity of the threshold limit.

There is a systematic increasing negative bias for SIT
> 2m, which reaches almost 20 cm for SIT ¼ 3 m in the
Free-run, EnKF-IG and EnKF-SQ. A similar trend of
negative bias is also observed in the EnKF-ALL and
EnKF-CLIM runs but to a slightly lesser extent. The
negative bias in the Free-Run is likely due to the perturb-
ation of the forcing fields, specifically the wind perturba-
tions, which can cause erratic movements of ice that
export thicker sea ice into areas of thinner ice. Since all
assimilation runs use perturbed winds, this effect is likely
to impact the EnKF-IG and EnKF-SQ more than the
EnKF-ALL and EnKF-CLIM. In addition, it is import-
ant to mention that there are fewer grid points (not
shown here) in the bins for thicker ice compared to thin
ice, which may also affect the estimation of the bias for
these bins, making them statistically less significant.

As discussed in Shah et al. (2018), the two-piece
Gaussian observation likelihood may influence the shape
of the posterior distribution, making it skewed and thus
less Gaussian. In order to examine this, we evaluate and

Fig. 9. Bar chart of time-averaged posterior bias for SIT obtained from all tested DA schemes. Solid black line represents the time-
averaged bias for SIT obtained using the Free-run. Red dotted line represents the time-averaged difference of climatology and truth. SIT
bins are displayed on the x-axis with a bin size of 25 cm. Reported in the legend are the time-averaged-weighted total mean bias
including the bins for ice thicker than 3m, which is not shown here. The weights are computed as a fraction of the number of grid cells
falling in specific bin interval over total number of grid cells.
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plot the conditional skewness of the posterior estimates
of SIT only at the last assimilation step in Fig. 10. The
conditional skewness of the posterior is calculated as the
average value of the skewness for all grid cells where the
truth falls within the interval of a bin in consideration.
Note that contrary to the computation of the conditional
BIAS at the location of the observations, the conditional
skewness is computed at the truth locations.

As shown in the figure, thin ice (SIT � 25 cm) yields
noticeable skewness in the posterior estimates for all
schemes. In the first bin, the truth is close to zero meters
(open water) and hence all instances where thin ice has
melted in the assimilation run count as zero value. On
the other hand, freezing instances lead to various thick-
ness values above 25 cm. Both effect together can make
the distribution skewed. The bin between zero and 10 cm
shows even larger skewness and has been removed for a
better visual presentation. Other than the first bin, a
small negative skewness is observed for all the schemes.
One possible explanation is the fast melting of ice, drift-
ing over warm waters; a situation enhanced by the lack
of coupling with the ocean in the assimilation. This result
confirms that the EnKF-SQ, although it uses a skew 2-
piece Gaussian likelihood, does not introduce any notice-
able positive skewness in its posterior.

4.4. Physical consistency

Ice-ocean models are essential tools for computing inte-
grated quantities that are often difficult to estimate from

observations only. Sea ice volume and water transport
between ocean basins are such high interest quantities for
climate studies. Therefore, it is important to evaluate
these quantities to verify that the use of data assimilation
does not cause physical inconsistencies.

The total sea ice volume is the integral of sea ice con-
centration times the sea ice thickness over the entire
model area. Its evolution for the different assimilation
runs is shown in Fig. 11a. The difference between the
assimilation runs compared to the true sea ice volume
(Fig. 11b) is relatively small. This is because none of the
DA schemes has extensively added or removed ice during
the assimilation run. In Fig. 11b a classical seesaw
Kalman update behavior is observed. The comparison
also reveals that most methods tend to underestimate the
ice volume except for EnKF-CLIM.

As described earlier, the EnKF-IG has a negative SIT
bias, which translates to a nominal loss of between
300 km3 to 500 km3 of sea ice volume from the beginning
to the end of the winter (less than 3% of the total simu-
lated ice volume). Seesaw of the time series curves con-
firm that the EnKF-IG update does remove some ice,
which grows back during the subsequent TOPAZ4
model run. The EnKF-SQ does only partially mitigate
this loss by 100 to 200 km3 of ice. Surprisingly, the
EnKF-ALL is not bias-free either with a loss of up to
100 km3 of ice, which can be caused by various sub-opti-
mal aspects of the data assimilation system, in particular
the aforementioned effect of wind perturbations on the
areas of thickest ice and the weakly coupled DA. These

Fig. 10. Bar chart of the conditional posterior skewness for SIT estimates obtained using all tested DA schemes and computed at the
final assimilation time. Dashed black line represents the detection limit of 1m SIT.
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effects also contribute to the low bias in the other
two methods.

The EnKF-CLIM ice volume is closest to the truth run
with a little overestimation in the beginning of the winter,
then an underestimation in the spring. The construction
of the climatological data can explain this trend: since
SIT data above one meter only have been retained, the
climatology overestimates the SIT in the beginning of the
winter but then underestimates the SIT in the midst of
the winter because it also accounts for summer SIT. A
different construction of the SIT climatology data would
have led to a different tendency in EnKF-CLIM.

5. Discussion and conclusions

The purpose of this paper is to demonstrate the useful-
ness of assimilating range-limited observations with the
new EnKF-SQ DA scheme under a realistic experimental
setup. Compared to the stochastic EnKF, the main algo-
rithmic difference is the need to compute a different
Kalman gain for each ensemble member, depending on
the location of the member to the threshold when the
observation is out-of-range. This does not make the
EnKF-SQ less efficient, but rather prevents the algorithm
from being included as a simple extension of existing
EnKF codes: it cannot be expressed with an ensemble
transform matrix.

Different assimilation experiments are conducted to
assess the performance of the EnKF-SQ against other
EnKF configurations assimilating only thin ice; both thin
and thick ice; and climatology during a winter period in
the Arctic. The study shows that assimilating soft data
improves the forecast accuracy compared to ignoring

them by approximately 8%, particularly where sea ice
approaches the detection limit. Such a difference can be
important in the performance of an operational system.

The performance exhibited by assimilating a reason-
ably accurate climatology was similar to the EnKF-SQ.
Also, our choice of climatology being annual rather than
seasonal may explain some of the flaws in the EnKF-
CLIM. Nonetheless, the context of twin experiments is
very favorable to EnKF-CLIM because the climatological
truth is accurately known; a case which is not true in
realistic situations. For instance, in summer there are
very few ice thickness measurements and thus it is diffi-
cult to construct a meaningful climatology. To this end,
it is essential to investigate and compare the performance
of the EnKF-SQ and EnKF-CLIM in a context of a
biased model twin experiment and with a range of toy
models (from linear to non linear regimes).

Assessing the bias of the analysis showed that there is
no introduction of any significant bias by the EnKF-SQ,
other than the negative bias for thicker ice which is
observed in all tested DA schemes. Likewise, the poster-
ior distributions resulting from the application of the
EnKF-SQ did not consist of any noticeable higher order
moments that could result in undesirable non-Gaussian
features because of the two-piece Gaussian likelihood.
This is most likely the case for all realistic applications
where one would expect relatively small assimilation
updates coming regularly in time. The conditional statis-
tics introduced in this paper represent new assessment
metrics which were not used in Shah et al. (2018).

As noted in the introduction, the fixed detection limit
of 1m is a convenient simplification in the present twin
experiment and should in practice depend on the state of

Fig. 11. (a) Daily ensemble average of sea ice volume over the TOPAZ4 model area for the entire experiment time. (b) Difference of
sea ice volume from the truth and all tested DA schemes.
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deformation of the ice. The sensitivity experiments in
Shah et al. (2018) indicate however that the present find-
ings should still hold with different values of the detec-
tion limit for SIT. Furthermore, the choice of out-of-
range (OR) observation error variance was not found to
be very critical. A wide range of values for this parameter
were tested and lead to acceptable performance of the
EnKF-SQ. Ways of estimating r2

or adaptively in space
and time is currently being investigated and will be
reported in a follow-up study. Concerning the physical
constraints of the model, the EnKF-SQ estimates were
found to be physically consistent and comparable to
other tested assimilation schemes.

The assimilation of synthetic sea ice thickness data
with a upper detection limit of 1m in a coupled ice-ocean
model of TOPAZ4 is demonstrated using the EnKF-SQ
and shown to have a useful impact on SIT estimates. The
results obtained with SMOS-like observations can be gen-
eralised to CryoSat2-like observations by reversing the
upper limit into a lower limit. Thus, merging the two
products may not be necessary because each satellite data
can be assimilated in a separate EnKF-SQ step. The
EnKF-SQ therefore makes a viable data assimilation
strategy for range-limited observations in high-dimen-
sional nonlinear systems. Future research will focus on
assimilating real data, in which the EnKF-SQ is con-
fronted with large observation biases unlike the presented
twin experiments setup.

Notes

1. It should be noted that the comparison of
assimilating merged versus separate data is not
informative because their observation errors are
not equivalent.

2. rir is a special case of rh, for hard data at the
detection limit.
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