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In a recent National Research Council document, new
strategies for risk assessment were described to enable more
accurate and quicker assessments.(1) This report suggested that
evaluating individual responses through increased use of bio-
monitoring could improve dose-response estimations. Identi-
fication of specific biomarkers may be useful for diagnostics or
risk prediction as they have the potential to improve exposure
assessments. This paper discusses systems biology, biomarkers
of effect, and computational toxicology approaches and their
relevance to the occupational exposure limit setting process.

The systems biology approach evaluates the integration of
biological processes and how disruption of these processes by
chemicals or other hazards affects disease outcomes. This type
of approach could provide information used in delineating the
mode of action of the response or toxicity, and may be useful to
define the low adverse and no adverse effect levels. Biomarkers
of effect are changes measured in biological systems and are
considered to be preclinical in nature. Advances in computa-
tional methods and experimental -omics methods that allow
the simultaneous measurement of families of macromolecules
such as DNA, RNA, and proteins in a single analysis have made
these systems approaches feasible for broad application.

The utility of the information for risk assessments from
-omics approaches has shown promise and can provide in-
formation on mode of action and dose-response relationships.
As these techniques evolve, estimation of internal dose and
response biomarkers will be a critical test of these new tech-
nologies for application in risk assessment strategies. While
proof of concept studies have been conducted that provide
evidence of their value, challenges with standardization and
harmonization still need to be overcome before these methods
are used routinely.

Keywords biomarkers, dose-response, exposure assessment,
occupational, risk assessment
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INTRODUCTION

Currently, little toxicity data exist for most of the 82,000
chemicals used in the United States, which greatly ham-

pers risk assessment and management activities.(2,3) In addi-
tion, it is rare for workers or the general public to be exposed
to only to a single compound, but rather they are exposed
to complex mixtures that may have additive, synergistic, or
antagonistic actions. The complexity of exposure scenarios
and lack of data make risk management decisions difficult and
time consuming.

The systems biology approach is based on consideration
of normal biological processes (including pathways leading
to effects and homeostatic and adaptive responses) and how
chemicals disrupt those processes.(4,5) This type of approach
would provide integrated information that could be used in de-
lineating the mode(s) of action (MOA) of the adverse response
or toxicity.(6,7) Different doses can produce widely different
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responses in an organism. Some of the responses are of no
consequence to the health or viability of the organism, others
may be beneficial (e.g., antioxidant), and others are toxic.(8)

Biomarkers have been defined by the National Academy
of Sciences (NAS) as measurable changes in a biological
system or organism or measured alterations in structure or
function (Figure 1).(9) Biomarkers may be indicative of expo-
sure, response or effect, and susceptibility and can be used
to monitor exposures and a wide variety of responses ranging
from abnormal development to early disease indicators.(9,10)

Occupational exposures are mainly by inhalation or through
the dermal route, while the primary route for general environ-
mental exposures is by ingestion. Route of exposure may affect
the level of internal dose and therefore the toxicity. Biomarker
measurements are an aggregate of all exposure pathways. One
benefit of early response biomarkers is in their interpretation
within the context of integrated systems models, which connect
these biomarkers to adverse outcomes of regulatory concern.
Advances in computational methods(11) and experimental -
omics methods that allow the simultaneous measurement of
families of macromolecules such as DNA, RNA, and proteins
in a single analysis(12) have made these systems approaches
feasible for broad application in both pharmaceutical discov-
ery(11) and environmental risk assessment.(6) The promise is
that information on hazard characterization, dose response,
and risk characterization can be generated by -omics methods
and used in risk assessments.(7,13)

This article focuses on systems biology, biomarkers of
effect/response, and computational toxicology approaches and
their relevance to the occupational exposure limit (OEL) set-
ting process. A glossary of key terms relating to this topic is
provided in Table I and acronyms are defined in Table II.

Key points of emphasis covered in this article include the
following.

• Many drivers exist for increased reliance on systems bi-
ology approaches that are pushing changes in health risk
assessment methods, including for OEL setting.

• Practical long-term implications of such approaches are
many, including decreased uncertainty in OELs through
improved understanding of biological responses at lower
levels of chemical exposure.

FIGURE 1. Continuum from exposure to disease. Adapted from
NRC(9) and Schulte and Perera.(10). Reproduced from Environ-
mental Health Perspectives.

• Current methods and tools for consideration of effect
biomarkers and the relationship with the toxic MOA within
the framework of systems biology are being used and ap-
plied in OEL setting via proof of concept studies.

CURRENT EFFORTS ON EARLY RESPONSE
BIOMARKERS AND RISK ASSESSMENT

Some efforts have been initiated in the global community
to revise the way that risk assessments are conducted

or to speed the data flow into risk assessments (Table III).
The European Registration, Evaluation, Authorisation, and
Restriction of Chemicals (REACH) program seeks to deter-
mine the risk of thousands of chemicals that are produced
in quantities greater than 10 tons/year.(14) Derived No Effect
Levels are required for all chemicals that are classified as a
health hazard. Traditional toxicity testing is unsustainable and
unethical under this paradigm, because of the large number
of animals that would be needed and the associated high
cost.(15) Efforts to establish a sustainable strategy for toxicity
testing in the United States were accelerated when the National
Research Council (NRC) defined a vision of toxicity testing in
the 21st century that called for greater use of in vitro testing,
computational system approaches, and a reduction of expen-
sive animal testing.(3,16) In the NRC strategy, toxicity testing
would evaluate specific perturbations in identified pathways
rather than by direct evidence of adverse effects; therefore,
risk assessments would be revised to incorporate this new
information.(17) These new technologies could be performed
faster and cheaper and evaluate toxicity of a larger number of
concentrations.

Shortly after the NRC report on toxicity testing,(3) a separate
NRC committee published recommendations on the use of
toxicogenomic technologies and the need for more predic-
tive toxicity testing for incorporation into risk assessments.(1)

Improvements in cross-species extrapolation, identification of
vulnerable or sensitive populations, determination of life stage
effects, investigation of mechanisms of action, and refinement
of exposure assessments are all potential uses for toxicoge-
nomic data.(1)

Computational toxicology was the subject of a National
Academy of Sciences Standing Committee on Use of Emerg-
ing Science for Environmental Health Decisions meeting in
September 2009. The field of computational toxicology has
emerged in an effort to build predictive models from biomarker
of effect data generated by omics technologies.(18) Computa-
tional toxicology identifies trends and patterns in biomarker
and chemistry datasets.(19) These models use chemical char-
acterization to predict fate and transport as well as hazard
identification. Computational toxicology also seeks to describe
ways through which chemicals cause toxicity by developing
computational tools that better utilize high throughput screen-
ing (HTS) and toxicogenomics data for hazard prediction. This
includes models at varying levels of biological complexity,
from relatively simple statistical models(20–22) to advanced
dose-response and virtual tissue models.(23,24) The field of
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TABLE I. Glossary of Key Terms

Key Term Definition

Benchmark dose A dose of a substance that when absorbed produces a
predetermined change in the response rate of an adverse
effect relative to the background response rate of this effect.

Benchmark response (BMR) A predetermined change in the response rate of an adverse
effect relative to the background response rate of this effect.
The BMR is the basis for deriving benchmark doses.(50)

Biological-based dose response models (BBDR) A predictive model that describes biological processes at the
cellular and molecular level linking the target organ dose to
the adverse effect.(96)

Biomarkers Internal measures or markers of exposures or effects for a
chemical or agent in the body.

Biomarkers of exposure The chemical or its metabolite or the product of an interaction
between a chemical and some target molecule or cell that is
measured in a compartment in an organism.(97)

Biomarker of effect A measurable biochemical, physiologic, behavioral, or other
alteration in an organism that, depending on the magnitude,
can be recognized as associated with an established or
possible health impairment or disease.(97)

Biomarker of susceptibility An indicator of an inherent or acquired ability of an organism
to respond to the challenge of exposure to a specific
chemical substance.(97)

Computational Toxicology Computational toxicology identifies trends and patterns in
biomarker and chemistry datasets.(19)

Genomics Refers to the entire genome of an organism whereas genetics
is the study of a specific gene.

Exposome Concept by Wild(37) defined as the totality of exposure over a
life time beginning in utero until death and the impact those
exposures have on health.

High throughput screening (HTS) Experiments that can be automated and rapidly performed to
measure the effect of substances on a biologic process of
interest. These assays can evaluate hundreds to many
thousands of chemicals over a wide concentration range to
identify chemical actions on gene, pathway, and cell
function.

Lowest observed adverse effect level (LOAEL) The lowest exposure level at which there are biologically
significant increases in frequency or severity of adverse
effects between the exposed population and its appropriate
control group.(96)

Metabolomics Studies the metabolic products of the human body and
provides a comprehensive view of cellular metabolic
changes in small molecules and byproducts.(98) The
metabolomics-driven approaches may provide insight into
complex biochemical processes and the MOA and toxicity
of chemicals.(99, 100)

No observed adverse effect level (NOAEL) The highest exposure level at which there are no biologically
significant increases in the frequency or severity of adverse
effects between the exposed population and its appropriate
control; some effects may be produced at this dose level, but
they are not considered adverse or precursors of adverse
effects.(96)

(Continued on next page)
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TABLE I. Glossary of Key Terms (Continued)

Key Term Definition

-omics technology The collective characterization of components and measurement of molecules
from a biological field of study, which involves large scale data acquisition
system that can be used to measure biological states or responses; examples
include genomics, proteomics, transcriptomics, and toxicogenomics.

Proteomics Involves the identification, characterization, and quantitation of expressed
proteins in biological samples. Provides complementary functional
information to genomics.

Systems biology An approach used to integrate biological data to understand how biological
systems function.

Toxicogenomics Brings together toxicology, genetics, and molecular biology such as
transcriptomics, proteomics, and environmental health to understand the
response of an organism to an external insult. The promise of this
technology is that biomarkers of exposure and effect can be elucidated.(7)

Insight into the mechanism of action and low-dose effects are other benefits.
Transcriptomics The study of RNA transcripts that result in gene expression.
Uncertainty factors A numerical value (often a factor of 3 or 10) used to adjust a point of

departure (e.g., generally a no observed/lowest observed adverse effect
level or benchmark dose) in order to derive a reference concentration or
reference dose. Uncertainty factors are applied as needed to account for
extrapolation of results in experimental animals to humans, inter-individual
variability including sensitive subgroups, extrapolation from a NOAEL or
LOAEL, extrapolation of results from subchronic exposures to chronic
exposures, and database inadequacies.(101)

computational toxicology has rapidly expanded to include
many more applications than HTS, which is still an evolving
research area and in need of validation. Other applications
are being utilized such as data mining the literature, in vitro-
in vivo extrapolations, quantitative structure activity relation-
ships, in silico models and use of National Health and Nutrition
Examination Survey biomonitoring data for identification of
populations at special risk of toxicity.(25–27)

In 2009, a third NRC publication was released that exam-
ined the EPA risk assessment process and how to practically
improve it to assess human health risks.(28) Two main areas
of risk analysis were evaluated, technical analysis and utility
of risk. Technical analysis is how scientific information is
generated and used so that more accurate risk characterizations
can be obtained. Utility of risk examines the relevance of the
risk assessments for making risk management decisions. A
key recommendation was to improve the upfront design of
risk assessments to make them more useful to answer risk
management needs. In particular, the report emphasized the
importance of problem formulation in determining the scope
of the assessment, issues needing consideration, and options so
that the risk assessment can support risk management decision-
making. The report also noted the importance of characterizing
and communicating uncertainty and variability and of placing
greater emphasis on the evaluation of risk from cumulative
exposure scenarios.

TABLE II. Definitions of Acronyms

ANOVA Analysis of variance

BMD Benchmark dose
BMDL Benchmark dose and associated lower

confidence limit
BBDR Biologically-Based Dose Response
EPA Environmental Protection Agency
FDA Food and Drug Administration
FEL Frank effect level
HTS High throughput screening
LOAEL Lowest observed adverse effect levels
MOA Mode of action
NAS National Academy of Sciences
NIH National Institutes of Health
NIOSH National Institute for Occupational

Safety and Health
NOAEL No observed adverse effect level
NOEL No observed effect level
NRC National Research Council
OEL Occupational exposure limit
PBPK Physiological-based pharmacokinetic
REACH Registration, Evaluation, Authorisation,

and Restriction of Chemicals
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TABLE III. Efforts Affecting the Use of 21st Century Technologies and Risk Assessment

Group Name Result/Goals

European Commission Registration, Evaluation, Authorisation,
and Restriction of Chemicals
(REACH)(14)

Determination of risk of chemicals to
improve the protection of human health
and the environment

National Research Council Toxicity Testing in the 21st Century(3) Recommendations for greater use of in vitro
testing and computational approaches

National Research Council Applications of Toxicogenomic
Technologies to Predictive Toxicology
and Risk Assessment(1)

Recommendations for use of
toxicogenomic technologies in risk
assessment

National Academy of Sciences Meeting on Use of Emerging Science for
Environmental Health Decisions(19)

Discussion of promise of computational
toxicology for policy decisions

National Research Council Science and Decisions: Advancing Risk
Assessment(28)

Recommendations for improvements in the
science and practice of risk assessment

EPA NexGen(101) Evaluation of use of HTS, computational
toxicology and systems modeling for risk
assessment

The EPA has initiated a program (http://www.epa.gov/risk/
nexgen/) to evaluate the use of HTS, computational toxicology,
and systems modeling for risk assessment and risk manage-
ment for environmental exposures and the general population,
though not necessarily occupational exposures.(29) The vision
is for a tiered system that provides risk estimates on the basis
of available data as well as a formal means for recommending
chemicals for higher tier investigation.

ROLE OF BIOMARKERS IN OCCUPATIONAL
RISK ASSESSMENT

Amajor aim of biomarker research is to develop and val-
idate biomarkers that reflect specific exposures or are

quantitatively linked to adverse outcomes in humans to enable
their use in risk prediction. Biomarkers have a number of
advantages over “apical endpoints” typically observed in in
vivo toxicology studies (Figure 2).

Recent advances in biomedical technology have provided
powerful tools to identify new biomarkers (Table IV). -omics
technologies are increasingly being used and have brought ca-
pabilities to investigate adverse responses, underlying toxicity
mechanisms, and key toxicity pathways that have the potential
to be used in risk assessment (Table V).(30–32)

Environmental exposures can directly or indirectly cause
alterations in gene expression at either the transcriptional (gene
expression) or the translational level (proteomics). Develop-
ment of gene expression profiles using oligonucleotide mi-
croarrays provides a view of perturbations at the transcript level
and helps identify specific genes, pathways or networks that
are specific to the toxic end point of interest.(33) Identifying ap-
propriate biomarkers can be difficult because interpretation of
global gene expression changes is challenging as such changes
may reflect nonspecific responses or overlapping/interacting
molecular processes. The use of toxicogenomics data along

with other types of supportive toxicological data has been
considered for hazard characterization. Recent studies have
shown that benchmark dose estimates, based on gene expres-
sion omics data, for non-cancer and cancer apical endpoints
can be practically applied.(22,34)

Determination of internal dose is important in risk as-
sessment and provides highly relevant information that is
more closely associated with disease response than external
exposure estimates.(35) The capability of -omics technologies
to generate information that can be used for internal dose
estimation and response markers will be important in their use
in risk assessment.

FIGURE 2. Biologic responses as a result of an exposure. The
intersection results in perturbation of biologic pathways. When
perturbations are sufficiently large or when the host is unable
to adapt because of underlying nutritional, genetic, disease,
or life-stage status, biologic function is compromised, and this
leads to toxicity and disease.(94) © Elsevier. Reproduced by
permission of Elsvier. Permission to reuse must be obtained from
the rightsholder.
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TABLE IV. Different Types of Biomarkers

Type of Biomarker Characteristics Example

Exposure Measurement that reflects biologically effective
and internal dose

Urine or blood concentration of agent

Effect Measurable biochemical, physiological, or other
alteration that can be recognized as a potential
health impairment(102)

DNA mutation or cytogenetic change

Susceptibility Inherent or acquired sensitivities or resistance in
response to specific exposures

Genetic polymorphisms in metabolic
activation/deactivation enzymes

Epigenetics effects may also have an important role in the
development of disease. For example, gene silencing, which
is the interruption or suppression of the expression of a gene
at transcriptional or translational levels, can occur with hyper-
methylation of DNA.(36) Biomarkers of hypermethylation of
DNA may be useful as early cancer detectors and therefore
may have utility in risk assessments.

Although biomarkers have been identified using -omics
technologies, there is no well-established standardized ap-
plication of these technologies in using biomarkers in risk
assessment (Table VI). Involvement of multiple molecular
pathways in disease as in systems biology creates complex data
analysis/interpretation challenges in validating associations
between outcomes and sets of biomarkers.

The concept of the exposome, which encompasses all ex-
posures over a lifetime, has the potential to improve risk
assessment.(37) The exposome will rely on -omics or other
high throughput techniques for the identification of biomarkers
of exposure and effect. Multiplex profiling (metabolomics,
proteomics, and transcriptomics) is now being used along
with complementary assays for the most comprehensive and
informative views of biological systems.(38) The exposome has
the potential to offer more comprehensive exposure data that
can be used to develop more accurate exposure profiles to
improve risk assessments.

Most common chronic diseases involve the interaction of
multiple exposures and biological pathways that ultimately
lead to disease. System biology approaches have been used
to study a variety of diseases such as epilepsy and metabolic
syndrome and exposures such as particulate matter found in air
pollution.(39–41) However, systems biology and how different
biological processes may interact with one another to result
in disease needs to be better understood to be useful in risk
assessment.

The NRC(3) identified several strategies to use biomark-
ers of effect to extrapolate dose and evaluate dose response.
Physiological-based pharmacokinetic (PBPK) modeling can
describe the relationship between external exposure and the
internal dose (e.g., blood or tissue concentration of a toxi-
cant) that simulate the toxicity pathways of a chemical. PBPK
models can also be used to estimate an external dose (i.e.,
the relevant real world exposure) that would correspond to the
doses used in in vitro and in vivo test systems, as well as in
dose-response models to predict the environmental exposure

needed to elicit a toxic response.(3) Extrapolating in vitro
dose-response data to predict responses in vivo has been a
challenge because the doses applied in vitro have typically
been much higher than cells in vivo (e.g., in the lungs) would
experience even at occupational exposures.(42) An example
of one approach is a range of in vitro doses (∼0.2–68 µg/ml)
that was proposed based on estimates of the equivalent doses
to human lung cells after either 24-hr or a 45-year working
lifetime exposure to 1 mg/m3 of poorly soluble particles.(42)

Uncertainty about how well in vitro studies predict responses
in in vivo systems includes the effect of dose rate and the
role of other cells and processes in determining the in vivo
response.(43) An example of in vitro assays that show predictive
trends of in vivo dose-response relationships is for biomarkers

TABLE V. Examples of -Omics Technologies

Technology Parameters

Proteomics Involves the identification,
characterization and quantitation of
expressed proteins in biological
samples. Provides complementary
functional information to genomics.

Metabolomics Studies the metabolic products of the
human body and provides a
comprehensive view of cellular
metabolic changes in small molecules
and by-products.(98) The
metabolomics-driven approaches may
provide insight into complex
biochemical processes and the MOA
and toxicity of chemicals.(99,100)

Toxicogenomics Brings together toxicology, genetics, and
molecular biology such as
transcriptomics, proteomics, and
environmental health to understand the
response of an organism to an external
insult. The promise of this technology is
that biomarkers of exposure and effect
can be elucidated.(7) Insight into the
mechanism of action and low-dose
effects are other benefits.
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TABLE VI. Uses of Biomarkers in Hazard Charac-
terization and Dose-Response Analysis

Aids in the identification of mode of action in support of
risk assessment

Extends the dose-response curve to lower levels of exposure
Addresses uncertainty and variability including interspecies

differences and identifying susceptible population

of inflammation in lung epithelial cell cultures and acute
pulmonary inflammation in rats.(44,45)

Establishing a dose of concern is a primary goal of risk
assessment. Several approaches that use an internal dose have
also been described, including internal dose measures such
as biological exposure indices(46) and biomonitoring equiva-
lents.(47) Additionally, no observed effect levels and bench-
mark dose estimates can be applied for both internal and
external dose measures.(48–50) These dose estimates may be
used as points of departure to estimate exposures associated
with lower (or presumed no) disease risk. Figures 1 and 2

Genotype-exposure interactions are particularly important
for occupational and environmental diseases. Environmental
and occupational triggers may interact with genetic factors to
initiate the disease process or influence the clinical outcomes
including time to onset, severity of the response, or dose. There
has been little effort in incorporating genetic information into
the risk assessment process, although the advantage of such
data in improving accuracy has been discussed.(51–53)

Currently, the default approach for addressing inter-
individual variation in susceptibility for threshold effects is to
apply a 10X uncertainty factor.(54,55) Note that this factor is not
intended to cover the entire range of human variability. Instead,
this factor addresses the difference between a “safe dose”
estimate in the general population and the “safe dose” estimate
in the population of interest.(56) While the default size of the
inter-individual factor is 10X, smaller or larger factors may be
applied if supported by the available data, resulting in refined
estimates of human variability. Criteria for the use of data to
support other factors have been developed by the International
Programme on Chemical Safety (IPCS).(57) Biomarkers can
play a critical role in describing the distribution of responses
to a specified dose. This concept is illustrated in Figure 3, in
which the distribution (e.g., the biomarker for a physiologically
important response) is shifted in the susceptible populations or
life stages, resulting in a bi- or multi-modal overall distribution.
The shape of the distribution for a given biomarker would
depend on how it is distributed in the population (e.g., whether
associated with specific gene alleles or results from multiple
causes).

METHODS AND APPROACHES

Risk Assessment Methods and Issues
The goal of human health risk assessment is to predict the

likelihood of adverse health effects before they manifest in a
population. Different types of studies can provide information

that has utility in risk assessments. Epidemiologic studies are
important for the assessment of toxic effects directly in humans
because no interspecies extrapolation is needed. Such studies
are also important in estimating population-based, exposure-
attributable risks. The most important challenges related to epi-
demiological studies are the difficulties in precise estimation
of exposure, existence of confounding variables such as other
exposures and considerable inter-individual variation includ-
ing genetic make-up, physiological, nutritional, and lifestyle
differences. Such studies are also costly and time consuming
and have limitations in characterizing dose-response relation-
ships, causal mechanisms, and extrapolating to low doses in
risk assessment.(58,59)

Extrapolations from animal studies to humans are con-
founded by a number of issues, including species-specific dif-
ferences in uptake and response, homogeneity of test animals
as compared to heterogeneity of human populations and short-
term testing as compared to complex lifetime exposure, as well
as uncertainties due to gaps in the available data. Extrapolation
is further complicated by levels and routes of exposure, as these
factors can differ greatly between animal models and real-life
exposure scenarios. With regard to interspecies extrapolation,
several factors must be considered, such as dose normalization
for the differences in body size, metabolic rate, variability in
toxicokinetics of the chemical, and sensitivity of the target for
toxicity. Occupationally exposed populations have consider-
able physiological and genetic variability in such factors as
metabolic capacity and in toxicity response.

Efforts have been undertaken to harmonize dose-response
relationships for cancer and non-cancer endpoints(60) focusing
on MOA as the basis for selecting dose-response models and
determining extrapolation approaches.(61,62) In general, the
default science policy choice based on MOA assumes that a
threshold would not exist for substances that interact directly
with DNA. This is based on the idea that damage to one DNA
molecule could be fixed as a mutation and clonally expand
to cancer or result in other effects, such as developmental
toxicity. MOAs that do not involve direct DNA reactivity
(e.g., cytotoxicity leading to either necrosis or to regenerative
cell proliferation and cancer) are generally considered to have
biological response thresholds, due to the existence of repair
and redundant cellular processes.(63) However, when data are
available that provide strong evidence for alternative modes
of action, these data may replace default assumptions in risk
assessment and OEL derivation. For example, NIOSH(64) used
evidence concerning a secondary genotoxic MOA (via per-
sistent inflammation) to inform selection of the nonlinear (but
also non-threshold) dose-response models used to estimate the
working lifetime risk of lung cancer from inhalation exposure
to the poorly-soluble particulate titanium dioxide (TiO2).

There has been considerable discussion in the risk assess-
ment community recently concerning the observation of non-
threshold behavior for chemicals that do not interact with
DNA.(28,65,66) A threshold response for a given agent may
be difficult to detect in a population (e.g., a statistical dose-
response model may not be able to exclude zero as a possible
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FIGURE 3. Frequency distribution of a biomarker (physiological parameter) in two hypothetical populations to illustrate the effect of exposure
and susceptibility factors. Adapted from Woodruff et al.(95). Reproduced from Environmental Health Perspectives.

threshold dose), even if the MOA evidence indicates a thresh-
old is plausible. Reasons for observing non-threshold behavior
in a population for non-carcinogens include variability in
individual threshold responses or exposures that contribute
to an existing disease process.(67,68) Rhomberg et al.(66) sug-
gested some alternative explanations, such as measurement
error at low exposures in epidemiology studies, for not de-
tecting a threshold in human studies when a threshold is
observed in animal studies. Additionally, the observation of a
threshold may be influenced by factors including variability
and sample size in both animal studies and epidemiology
studies.

Risk estimates based on extrapolating high-dose animal
studies to humans may be particularly sensitive to assump-
tions about the MOA and shape of dose-response relation-
ships including threshold/non-threshold assumptions. Thus,
there may be considerable uncertainty in extrapolation from
animal studies when the doses are considerably higher than
those relevant to OEL development (e.g., if the MOA that
occurs at a high dose is not relevant to that occurring at a
much lower dose). Additional uncertainty may occur from
temporal extrapolations, which could result in over- or under-
estimation of the risk of long-term exposure.(69,70) Even when
the MOA is known, statistical arguments cannot resolve the
uncertainty in low-dose extrapolation, and so science policy
choices (e.g., default approach of linear low dose extrapolation
for carcinogens in the absence of strong evidence indicating
otherwise) are needed in risk assessment.

One of the advantages of using biomarkers of effect is that
they can help to reduce the need for extrapolation, allowing
instead evaluation of effects in the dose range of interest
and in the species of interest (e.g., when human cells are
tested in vitro). Under ideal situations, the MOA is used
to identify appropriate biomarkers, which are then evaluated
sufficiently close to the dose range of interest, so that math-
ematical curve fitting can be used to more directly estimate
risk, rather than relying on the cruder approaches of linear

extrapolation (assuming no threshold) or uncertainty factors
(assuming a threshold response).

The use of precursor effect data or biomarkers of early
effect is gaining increased scrutiny for use in risk assess-
ments.(22, 71) A challenge is that many of these biomarkers lack
validation.(72) The basis for extrapolation between the
biomarker and the toxicological outcome needs to be estab-
lished so that a dose associated with a low risk of an adverse
health effect can be estimated.(71)

Direct Dose-Response Using Early Effects Data
The analysis of -omic dose-response studies has tradi-

tionally utilized analysis of variance (ANOVA) approaches
together with pair-wise comparisons between dose groups and
the corresponding control.(73,74) The ANOVA identifies genes
that are significantly altered as a function of dose while the
pair-wise comparisons identify genes that are significantly
altered between specific dose pairs. The ANOVA approach
for analyzing -omic dose-response studies is analogous to the
methods used to define lowest observed adverse effect levels
(LOAEL) or no observed adverse effect levels (NOAEL) for
other toxicological endpoints (Table VII). For applying -omic
dose-response data to chemical risk assessment, the traditional
ANOVA approach faces several challenges in that dose spacing
and the experimental sample size can have a dramatic impact
on the final NOAEL and LOAEL, and the approach does not
account for variability in the estimate of the dose-response or
the slope of the dose-response curve.

To utilize -omic dose-response data within the existing risk
assessment paradigm, benchmark dose (BMD) methods have
been used to fit a statistical model to the dose-response data and
to identify a dose that causes a defined change in the endpoint
of interest.(22,34,75) The application of the BMD method pro-
vides several advantages including better use of dose-response
information, more appropriate reflection of experimental sam-
ple sizes, and the lack of constraint to experimental doses.(76)

In this analysis, the dose and individual gene response data
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TABLE VII. Effect Levels, by Severity, That are
Considered in the Derivation of Exposure Limits

Effect or No
Effect Level General Effect

NOEL No observed biological effects in the exposed
population

NOAEL Effects may be seen at this level but not
considered to be adverse

a) Enzyme induction or other biochemical
change, consistent with possible mechanism
of action, with no pathological changes and
no change in organ weights

b) Enzyme induction and subcellular
proliferation or other changes in organelles,
consistent with possible mechanism of
action, but not other apparent effects.

c) Hyperplasia, hypertrophy, or atrophy, but no
changes in organ weights

LOAEL Lowest exposure concentration where adverse
effects are seen between the exposed and the
control population.

a) Reversible cellular changes including cloudy
swelling, hydropic change or fatty changes

b) Degenerative or necrotic tissues with no
apparent decrement in organ function

FEL Exposure level in which unmistakable adverse
effects are seen that are likely to be
irreversible

a) Pathological changes with definite organ
dysfunctions

b) Pronounced pathological changes with
severe organ dysfunction with long-term
sequelae

Notes: NOEL – No Observed Effect Level; NOAEL – No Observed Adverse
Effect Level; LOAEL – Lowest Observed Adverse Effect Level; FEL – Frank
Effect Level. Adapted from EPA.(103)

are fit with the standard set of statistical models used in BMD
analysis. A single model is selected for each gene based on
fit, modeling complexity, and the BMD and associated lower
confidence limit (BMDL).

To allow investigators to interpret the -omic data and pro-
vide context for the observed BMD values, public and commer-
cial databases are used to group genes into functional processes
and signalling pathways.(77,78) The choice of database depends
on the context required for interpreting the -omic dose response
study. For certain studies, a pathway-based analysis may pro-
vide a better understanding of the underlying perturbations
in the signaling networks while in other studies, an analysis
focused on cellular-processes may provide better linkage with
the phenotypic effects of the chemical. The BMD and BMDL
values for the individual genes are summarized to represent
the general behavior of the process or signaling pathway as

a function of dose. In most cases, the mean or median BMD
and BMDL are sufficient to capture the general dose-related
perturbation of the category or pathway. In certain studies,
the transcriptional BMD values for specific cellular biological
processes and pathways showed a high degree of correlation
with traditional non-cancer and cancer-related apical BMD
values.(22,79) Many of the correlated processes and pathways
had been implicated in non-cancer and cancer disease patho-
genesis. Subsequent studies have demonstrated a high degree
of correlation between transcriptional BMD values for the
most sensitive pathway response and traditional non-cancer
and cancer-related apical BMD values.(13)

Early effects data can provide evidence about the MOA
and the shape of the dose-response relationship for disease
development. Epigenetic effects may alter down-stream re-
sponses and outcomes. However, to most effectively use early
response and systems biology data in risk assessment and
OEL derivation, predictive models are needed to link the early
response with the probability of developing the frank effect
(conditional on the early effect).

An example MOA involving early responses and frank
effect is persistent lung inflammation associated with devel-
opment of cancer.(80) This effect has also been observed in
animals related to inhaled, poorly-soluble particles(81) includ-
ing TiO2. The MOA for rat lung cancer from inhaled poorly
soluble particles is generally considered to involve persis-
tent pulmonary inflammation, which causes oxidative DNA
damage.(81) Driscoll et al.(82) observed an increased mutation
frequency in the hypoxanthine-guanine phosphoribosyl trans-
ferase gene (hprt mutations are detrimental lesions caused by
oxidative damage to DNA) in alveolar type II cells from rats
treated with a high mass dose (100 mg/kg) of fine-sized TiO2 or
other types of poorly-soluble particles. In vitro, hprt mutation
frequency was also increased in an alveolar epithelial cell line
(RLE-6TN) following co-incubation with inflammatory cells
(alveolar macrophages and neutrophils) derived from bron-
choalveolar lavage fluid from particle-treated rats.(82) Addition
of catalase (an enzyme which protects cells against oxidative
damage) to these co-incubations inhibited the increase in hprt
mutations. These studies support a role of inflammatory cell-
derived oxidants in particle-associated mutagenesis.

In risk assessment and development of recommended ex-
posure limits for fine and ultrafine TiO2, NIOSH(64) used
statistical models of animal dose-response data for lung cancer
and pulmonary inflammation to estimate the working lifetime
risks. On the basis of a secondary genotoxic mechanism,
prevention of persistent lung inflammation would be expected
to prevent lung cancer by that mechanism. However, evaluation
of the rat subchronic inflammation data did not show evi-
dence of a threshold (although the dose-response relationship
was nonlinear). Rat- and human-based excess risk estimates
for lung cancer from working lifetime exposures to inhaled
poorly-soluble particles were compared. The particles evalu-
ated include those for which long-term dose-response data are
available in both species, i.e., coal dust, carbon black, titanium
dioxide, silica, and diesel exhaust particulate. The excess risk
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estimates derived from the rat data were generally lower than
those derived from the human studies, and none of the rat-
and human-based risk estimates were significantly different
(all p-values>0.05).(83) Given the limited data available to
quantitatively evaluate the relationship between inflammation
and lung cancer in rats or humans, NIOSH derived the Rec-
ommended Exposure Limits on the basis of rat dose-response
data for lung tumors. NIOSH estimated the human-equivalent,
8-hr time-weighted average concentrations associated with
<1/1000 excess risk of lung cancer over a working lifetime,
derived from the nonlinear dose-response models fit to the rat
data.(64)

Biologically Based Dose Response (BBDR) Models
Risk estimates that rely on default assumptions may be

uncertain to the extent that the true relationships differ from
those assumptions. This uncertainty arises from the limited
data that are available to inform the selection of the dose-
response models and the assumptions used in interspecies
and low-dose extrapolations. Risk estimates on the basis of
default assumptions may overestimate the risk for a population
because the default approaches are intended to be conservative
in the absence of chemical-specific data.(84) They may also
underestimate risk in other cases (e.g., if greater individual
variability exists than accounted for in the default assump-
tions).(85,86)

By utilizing measurements of biological pathway perturba-
tions, uncertainties in the target tissue dose across species and
the influence of exposure routes may be decreased, resulting
in more reliable risk assessments.(84) An advantage of a BBDR
model is that, by describing key steps in the development of
toxic effects, alternative mechanisms of action can be evalu-
ated and compared to the data, to test hypotheses and evaluate
the importance of specific assumptions. BBDR models also
have the advantage of directly predicting the response at doses
of interest, avoiding the threshold/non-threshold dichotomy,
but they may require assumptions about the connections be-
tween dose and key events. These models can also incorporate
inter-individual susceptibility and confounders such as exist-
ing diseases and background exposures.(65) Although BBDR
models have a number of advantages, a key issue in their use
is the uncertainties associated with the parameters used in the
model, as well as the substantial sensitivity of the model results
to the assumptions regarding the underlying mathematical
form for intermediate steps in the mechanism of action.(87)

However, identification of biomarkers corresponding to these
intermediate steps would provide an opportunity to directly
address these assumptions and reduce the uncertainty of key
parameters. Verification of BBDR model predictions, as well
as incorporation of population-based distributions of parame-
ter values, may be needed for wider acceptance of these models
in risk assessment and development of OELs. The Interna-
tional Programme on Chemical Safety(88) guidance on use of
physiologically based pharmacokinetic (PBPK) models in risk
assessment provides a template to facilitate understanding of
models by risk assessors; a key consideration is comparing

the uncertainties of the PBPK/BBDR model with those of the
default approach.

Biologically informed empirical dose-response modeling
provides a bridge between strictly empirical models and full
BBDRs. Such approaches are analogous perhaps to compart-
mental pharmacokinetic models, but can incorporate pharma-
codynamic data using biomarkers. Like the compartmental
pharmacokinetic models, the biologically-informed empiri-
cal dose-response models incorporate some chemical-specific
data, but include empirical curve-fitting. The goal of such an-
alytical methods is to improve the qualitative and quantitative
description of the biological processes determining the shape
of the dose-response curve, without investing the resources
needed to develop and verify a BBDR model. An advantage
of these approaches is the use of quantitative data on early
events (biomarkers) to extend the overall dose-response curve
to lower doses using biology, rather than being limited to the
default choices of linear extrapolation or uncertainty factors.
Using biomarkers to extend the dose-response curve towards
the dose region of interest also offers the potential for better
description of the dose-response relationship of chemicals with
a MOA that includes contributions from both DNA-reactive
and non-DNA reactive components.

Allen et al.(71) developed such a model as a proof of con-
cept for predicting risk of lung cancer given persistent lung
inflammation from chronic inhalation of TiO2 in rats. A series
of cause and effect functions, fit using a likelihood estimation
approach, were utilized to describe the relationships between
successive key events leading to the ultimate tumor response.
This approach was used to evaluate a hypothesized pathway
for progression from a biomarker of exposure (lung burden),
through several intermediate potential biomarkers of effect, to
the clinical effect of interest (lung tumor production).

Another approach to biologically informed empirical dose-
response modeling was demonstrated by Hack et al.,(89) who
used a Bayesian network model to integrate exposure biomark-
ers to conduct an exposure-dose-response assessment for acute
myeloid leukemia resulting from exposure to benzene. The
network approach was used to evaluate and compare individual
biomarkers and quantitatively link the biomarkers along the
exposure-disease continuum. This work provides a quantita-
tive approach for linking changes in biomarkers of effect both
to exposure information and to changes in disease response.
Such linkage can provide a scientifically valid point of de-
parture that incorporates precursor dose-response information
without being dependent on the difficult issue of a definition
of adversity for precursors.

More classical mathematical approaches also have the po-
tential for linking biomarkers to adverse effects. For example,
the Hill model describes the biology of a chemical binding
to a receptor, a key event in many receptor-mediated MOAs.
Budinsky et al.(90) used the Hill model to compare the dose-
response for aryl hydrocarbon receptor-mediated CYP1A1
and CYP1A2 messenger RNA induction and enzyme activ-
ity in rat and human hepatocytes exposed to 2,3,7,8-tetrac-
hlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, or
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2,3,7,8-tetrachlorodibenzofuran. In an extended analysis of
genome-wide transcriptomic data from the same experiment,
BMD analysis of the gene expression changes showed an
average 18-fold cross-species difference in potency among
differentially expressed orthologs and similar differences were
observed for signaling pathways.(91) The data were used to
support the conclusion that humans are less sensitive than
rats to these aryl hydrocarbon receptor-dependent end points
and to support the use of a modified uncertainty factor for
extrapolating between rats and humans.

More general approaches to empirical dose-response mod-
eling are incorporated in standard modeling methods where
the mathematical form used for empirical curve-fitting is based
on the presumed shape of the biological response. Thus, for
example, probit modeling is typically used for modeling lethal-
ity data. Similarly, a multistage model has been used for
tumor modeling, based on the multi-stage model for can-
cer. In an example of modifying the standard choice based
on biology, Dourson et al.(92) used the probit model to de-
scribe the dose-response for thyroid tumors in rats orally
exposed to acrylamide. This choice was based on both im-
proved empirical model fit compared to the multistage model,
and the observation that the shape of the probit model better
reflected (compared with the default linear extrapolation ap-
proach) the mixed MOA of DNA reactivity at low doses and
growth stimulation at the higher doses tested in the animal
bioassay.

CONCLUSIONS

Advantages and Limitations
Several key advantages to the use of biomarkers in risk as-

sessments exist. Biomarkers are used to identify the MOA and
can support the MOA in risk assessments rather than relying on
general default approaches. Additionally, biomarkers can be
used to characterize inter-individual variability by helping to
ensure that sensitive populations are identified and adequately
addressed in the assessments and to reduce uncertainty in
the extrapolation of animal data to humans.(53,93) Another
advantage of biomarkers is hypotheses are tested at doses
relevant to human exposures. One ultimate goal of the use of
biomarkers is to extend the dose-response curve to the range (or
near the range) of the exposures of interest. This would allow
one to use the biomarker data more directly to evaluate dose-
response, without having to go to default approaches of linear
or nonlinear extrapolation. Such data could be used to establish
more appropriate OELs to protect individuals who are at high
risk. Systems biology and MOA approaches will also lead
to new hypotheses and ways of thinking about chemical risk
assessments and hence move the entire field of risk assessment
forward.

While early biomarkers of effect have great promise, many
limitations and challenges need to be overcome before early
effect biomarkers can be reliably used. The whole field of
computational toxicology and systems biology is still evolving
and results have not been validated in human populations.

Appropriate interpretation and validation of biomarker results
is lacking.

Special Issues in Applying These Approaches for
OEL Setting

Developing OELs on the basis of early effects dose-
response data means that more sensitive, relevant endpoints
could be targeted for prevention. If these biomarkers can be
validated to ensure they represent an adverse effect, it may be
possible to reverse a deleterious exposure before the disease
has progressed. These precursor events (i.e., detected using
a biomarker) might be preclinical but could be associated
with an increased susceptibility to develop the disease effect.
Setting OELs to prevent early adverse effects may help to
prevent material impairment of health and functional capacity
as a result of workplace exposure. However, a challenge is to
determine the linkage between early effects, which may not
yet constitute material impairment of health and functional
capacity, and the later adverse outcomes.

Since the risk of preclinical responses have not been well
defined with respect to what those biomarkers mean to health,
this presents a challenge in how to utilize early effects data
in a standardized, harmonized risk assessment strategy across
agents and cancer and non-cancer endpoints, as recommended
by the NRC.(28) The use of BBDR models to quantitatively
link early preclinical changes to apical endpoints of regulatory
concern may mitigate this problem in the future.

Standardization is an important issue in the use of biomark-
ers, although the issue is not unique to the biomarker-based risk
assessments. In an approach based on the NOAEL/LOAEL
with uncertainty factors, the NOAEL may be based on a
range of different responses or severity of response at the
corresponding LOAEL. This severity of the endpoint may be
addressed in the magnitude of the uncertainty factor applied
to the LOAEL, but this is a relatively crude approach. One of
the advantages of the BMDL is that it is based on a response
level, but differences in severity of the endpoint can still lead
to inconsistencies.

Early biological effects using a systems biology approach
and computational toxicology efforts offer great promise for
the future of risk assessment. Information on these effects can
be generated using HTS providing needed information quicker
and cheaper than conventional animal testing. Proof of concept
studies in computational toxicology provide early evidence of
their promise in utilizing early biomarkers in establishment of
dose.(22,34) However, challenges such as standardization and
validation still need to be overcome before these methods are
used in routine risk assessments.
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