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TECHNICAL PAPER

Trends and spatial patterns of fine-resolution aerosol optical depth–derived
PM2.5 emissions in the Northeast United States from 2002 to 2013
Chia-Hsi Tanga, Brent A. Coullb, Joel Schwartza, Qian Dia, and Petros Koutrakisa

aDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; bDepartment of Biostatistics, Harvard
T.H. Chan School of Public Health, Boston, MA, USA

ABSTRACT
Clarifying the trends in quantity, location, and causes of PM2.5 (particulate matter with an
aerodynamic diameter <2.5 μm) emission changes is critical for evaluating and improving emis-
sion control strategies and reduce the risk posed to human health. According to the National
Emissions Inventory (NEI) released by the U.S. Environmental Protection Agency (EPA), a general
downward trend in PM2.5 emissions has been observed in the United States over the past decade.
Although this trend is representative at the national level, it lacks the precision to locate emission
hotspots at a finer scale. Moreover, the changes reported in the NEI are likely confounded by
periodic modification of inventory methods, and imprecision for area sources. In this regard, it is
imperative to acquire emission inventories with as much spatial and temporal details as possible
to further our knowledge of particle emissions, exposure levels, and associated health risks. In this
study, we employed the PEIRS (Particle Emission Inventory using Remote Sensing) approach (Tang
et al., 2016) predict triennial-averaged emissions at 1 km × 1 km resolution across the Northeast
United States from 2002 to 2013. Notably, the PEIRS approach is able to capture both primary
emission and secondary formation of PM2.5. Regional emission trends were evaluated using
quantile regression, and source-oriented trends were modeled with land use regression. The
analysis found a regional decrease in PM2.5 emissions of 3.3 tons/yr/km2 (18%) over the 12-yr
period. Furthermore, the rate of emission change at the extremes of the emission distribution was
significantly different than that of the mean. Both quantile regression and spatial trends imply
that the majority of the reduction in PM2.5 emissions was attributable to highly developed spaces
such as metropolitan areas and important traffic corridors. This urban-rural disparity was parti-
cularly apparent during the cold season. Indirect evidence suggested that the emission decline
during the warm season is primarily attributed to less secondary particle formation. These
findings warrant closer investigation of the impact of seasonality on PM2.5 emissions.

Implications: Emission trend analysis provides crucial information for evaluating and enhancing
the efficacies of emission control strategies as well as studying air pollution associated health risks.
In this study, the patterns and trends of year-round and seasonal PM2.5 emission over the Northeast
United States are presented at a spatial resolution of 1 km × 1 km for the period of 2002–2012.
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Introduction

Particulate matter with aerodynamic diameters less than
2.5 μm (PM2.5) poses a serious public health concern.
Globally, exposure to PM2.5 contributed to approximately
3.5 million annual cardiopulmonary mortalities and
200,000 lung cancer–associated annual mortalities
(Anenberg et al., 2010). In the United States (U.S.), an
estimated 130,000 deaths per year were attributed to
PM2.5 exposure (Fann et al., 2012). Furthermore, a recent
study reported that there is no safe threshold of PM2.5

exposure (Shi et al., 2016). Thus, despite the significant
decreases in PM2.5 concentrations that have been
achieved in the U.S. (Hu et al., 2013), there is a need to

further improve air quality to reduce adverse health
effects. The most effective way to improve air quality is
through source control, and a better understanding of
trends in the quantity, location, and causes of PM2.5

emissions is of utmost importance to achieving this goal.
The U.S. Environmental Protection Agency (EPA),

which is mandated to maintain good air quality for the
general public, has taken a number of steps to monitor
particle emissions over the past decade. Specifically,
they developed the National Emissions Inventory
(NEI) that contains triennially updated criteria (CAP)
and hazardous (HAP) air pollutant emission estimates
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for a broad spectrum of source types. According to the
2011 NEI, primary anthropogenic PM2.5 emission has
decreased 53% nationally between 1990 and 2011, with
the largest decline in the fuel combustion category
(72%) (EPA, 2011). Typically, the East Coast shows
the highest PM2.5 emission density as well as its pre-
cursor gases, including sulfur dioxide (SO2), volatile
organic compounds (VOCs), and ammonia (NH3).
Most pollutants are generated in urban counties, except
NH3, which is higher in more rural areas where agri-
cultural and pasture activities are frequent. Although
the NEI trends are generally representative at the
national level, local-scale emission characteristics are
less clear because the NEI estimates are often based
on county-level models using data collected at various
points in time. Furthermore, the confluence of other air
pollutants may also increase the uncertainty of local-
scale models. For these reasons, EPA has sought more
detailed analyses of local emission assessments.

EPA deploys a source-oriented approach to construct
the NEI, which estimates the unit emission per activity
(or emission factor) of known sources and acquires
frequencies of the emission activities to predict total
emissions. The NEI is useful in answering general emis-
sion questions over broad geographic areas, but this
inventory method has led to several issues in interpret-
ing emission trends. First, as EPA prioritizes tracking of
primary particle sources, the NEI PM2.5 emission esti-
mates only represent a fraction of the total PM2.5 emis-
sions. Secondary particles are currently indirectly
monitored by precursor gases that facilitate particle for-
mations are only voluntarily reported. As secondary
particles play an important role in the air quality in the
U.S., more comprehensive measure or estimation on this
portion of the pollution would render the NEI more
complete. Second, whether the NEI trends reflect a real
change or is merely a consequence of the periodic
adjustment of inventory methodologies is still uncertain.
A slight upward trend in PM2.5 emissions from the
highway vehicle sector was reported in both the 2005
NEI (EPA, 2005) and 2008 NEI (EPA, 2008). However,
EPA scientists have concluded that the change is likely
due to recent method and data improvements in esti-
mating mobile sources (EPA, 2008). Lastly, updating
new emission factors is costly and laborious. The pro-
spect of comprehensively researching every existing and
emerging emission source is unrealistic. Emission factors
that are not regularly revised or updated may also lead to
disparities in quality among source sectors. For instance,
information on oil and gas operations was incomplete in
the 2008 NEI, especially for non–point source sectors.
The wide spread use of diesel engines to power hydraulic
fracturing in the Marcellus shale and elsewhere means

that emissions from individual wells may be underesti-
mated (Natural Resources Defense Council [NRDC],
2014). Moreover, particle emissions from wildfires, pre-
scribed fires, and biogenic sources are often excluded
from the NEI due to high uncertainties of information.
Since climate change is likely to increase the incidence of
wildfires, this omission may produce misleading trends
(EPA, 2016). Obsolete or incomplete emission informa-
tion may render the NEI insufficient to accurately and
comprehensively represent emission trends.

Instead of estimating individual emission factors,
recently, we developed a new method (Particle
Emission Inventories using Remote Sensing, PEIRS),
which deploys a top-down approach by predicting the
total PM2.5 emissions directly using satellite data (Tang
et al., 2016). Because satellite data have great potential
to enhance the timeliness and locating accuracies for
emission estimates, satellite imagery has been used to
construct inventories for biomass burning or forest fire
emissions (Zhang et al., 2011) and global aerosol emis-
sions at 1°–2° spatial resolution (Dubovik et al., 2008;
Huneeus et al., 2012). The PEIRS approach integrates
state-of-the-art statistical modeling and long-term daily
satellite retrievals of high-resolution 1 km × 1 km
aerosol optical depth (AOD) data to generate spatially
and time-resolved emission inventories. It has been
successfully applied to predict 12-yr averaged emissions
in the Northeast U.S., and the data have shown reason-
able agreement with the county-level NEI. PEIRS
emission estimates reflect small-scale intraurban varia-
tions, which provide crucial spatial information for
health effects studies and legislative decision-making.
More importantly, the PEIRS approach enables us to
capture both primary emissions and secondary forma-
tion inside each 1 km × 1 km cell based on a mass
balance model. The limitation of the PEIRS method is
that AOD data retrieval is restricted during certain
weather conditions (e.g., cloudy and snow covered
days). However, the PEIRS can still provide ample
temporal information when more than 1 yr of AOD
data are used to predict emissions. Its enhanced cost-
effectiveness and consistency also render the PEIRS
inventory more adequate for trend analyses.

In this study, we applied the PIERS approach to
estimate triennial-averaged PM2.5 emission inventories
and then assessed regional temporal and spatial trends in
the Northeast U.S. (Figure 1). Calculation of multiyear
emission averages is an interim strategy to compensate
for weather-associated missing AOD data. Thus, our
study duration consists of four 3-yr periods spanning
from 2002 to 2013, which corresponds to the NEI trien-
nial update schedule. Period 1 refers to 2002–2004,
Period 2 to 2005–2007, Period 3 to 2008–2010, and
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Period 4 to 2011–2013. Regional emission trends were
examined using quantile regression models, and source-
oriented emission changes were predicted using land use
regression. We applied the aforementioned analyses
to (1) year-round, (2) warm season, and (3) cold sea-
son–specific emission estimates separately to further
determine the seasonality of emission trends.

Methods

Input data

Satellite AOD-derived PM2.5 concentrations
We obtained spatially resolved daily PM2.5 concentration
estimates over the period from 2002 to 2013. The concen-
tration estimates were derived from high-resolution (1 km
× 1 km) daily AOD data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument on
board the Aqua Earth Observing Satellite. High-resolution
AOD data were retrieved using the Multi-Angle
Implementation of Atmospheric Correction (MAIAC)
algorithm (Lyapustin et al., 2011), which has been proven
to be more robust with higher retrieval rates (Chudnovsky
et al., 2013). Detailed calibration procedures and perfor-
mance are described in Tang et al. (2016).

Meteorological data
Daily averaged surface-level boundary layer height
(PBL), temperature (TEMP), and wind field data dur-
ing the period from 2002 to 2013 were obtained from
the National Oceanic and Atmospheric Administration
(NOAA) North America Regional Reanalysis (NARR)
database (Mesinger et al., 2006). All NARR daily
meteorological variables were linearly interpolated
from the original resolution of 32 km × 32 km to a
resolution of 1 km × 1 km using the scattered

interpolant package from Mathworks (Natick, MA;
http://www.mathworks.com/help/matlab/ref/scattere
dinterpolant-class.html). After interpolating both wind
field parameters into 1 km × 1 km resolution as
described above, we calculated wind speed (WS) as
the square root of sum of u2 and v2 and wind direction
(WD) as the vector sum of u and v. We assumed that
the daily wind direction and wind speed were constant
within the boundary layer.

Land use variables
Land use parameters often serve as surrogates of anthro-
pogenic PM2.5 sources; in this study, land use parameters
were used to quantify source-oriented emission intensities.
The percentage of land cover in a grid of 1 km × 1 km cells
covering the entire Northeast U.S. was obtained from the
2011 collection of the National Land Cover Database
(NLCD). Important land cover parameters used in the
land use regression (LUR) included spaces with high-,
medium-, and low-intensity development, developed
open spaces, agriculture, grass, deciduous forest, evergreen
forest, and mixed forest. Major roads (A1–A3) density was
gathered from the StreetMap USA database using the
Feature Class Code (A1–A4) classification from the U.S.
Census Bureau Topologically Integrated Geographic
Encoding and Referencing (TIGER) system. Annual aver-
aged traffic count for major roads was obtained from the
Highway Performance Monitoring System (HMPS) data-
base. The built-in Kernel density algorithm (Silverman,
1986) from ArcMap was used to calculate traffic count
weighted for major road density within 1 km2.
Population density was calculated within 1 km2 from the
census track database of 2000. A variable indicating the
presence of industrial point sources was created by inter-
secting the locations of large industrial facilities and the
corresponding 1 km × 1 km cell in the study domain grid.

Figure 1. Study area: Northeast U.S.
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Statistical analysis

Emission model
PEIRS is an inventory method that models the dynamics
of fine particle fate and transport on a gridded domain of
1 km × 1 km cells. Three central processes are accounted
for in the PEIRS model: (1) transported particles from
upwind to downwind cells, (2) within-cell emissions, and
(3) particle removal by air exchange. The transport pro-
cess closely depends on air exchange rate (α), which is a
measure of the airflow entered or exitted from a fixed
space. The volume of this fixed space in our study had a
base area of 1 km × 1 km, and we used the boundary layer
height (PBL, km) to estimate its height. The flow rate of
this fixed volume of air was estimated by the produrct of
horizontal wind speed (km/sec) and the cross-sectional
area (PBL × 1 km) of the air movement. We obtained the
air exchange rate, α (1/sec), as given in eq 1:

α ¼ Flow rate
Volume of air

¼ WS� PBL� 1 km
1 km� 1 km� PBL

(1)

Once the air exchange rate was estimated for each grid
cell daily, we then used wind direction to locate upwind
cells that air masses carrying particles traveled through
on the corresponding day. Additionally, temperature is
included in the emission model as a surrogate for sec-
ondary particles formed outside of the downwind cell but
not captured by the upwind concentrations. Detailed
concepts and derivation of the emission model can be
found in the previous study (Tang et al., 2016). The
complete model (eq 2) is formulated as follows:

C ¼
X3

i¼1

ðCui � TemperatureÞ þ Q
α� PBL

(2)

where C is the PM2.5 concentrations in a downwind cell,
Cui is the PM2.5 concentration in an upwind cell i, and Q
is the estimated emission expressed in tons/yr/km2. This
model was fitted separately for each 1 km × 1 km grid
cell across the Northeast U.S. to obtain Q.

Quantile regression
Emission trends were estimated using a linear quantile
regression model with a linear variable indicating the
time period (Period). Quantile regression has the advan-
tage of estimating functional relationships for all por-
tions of the emission distribution (e.g., percentiles) as
opposed to the traditional mean estimator (Koenker and
Bassett, 1978). In addition, quantile regression does not
require any normality assumptions for variables.
Quantile regression provides a more comprehensive ana-
lysis of the emission trends, specifically at the higher and

lower percentiles in the distribution, where the trends in
emissions may be quite different because those percen-
tiles may have different source profiles from those that
drive the center of the distribution of emissions.
Quantile regression was performed from the 5th percen-
tile to the 95th percentile using the quantreg package
(version 5.26) (Koenker, 2015) in R version 3.2.2
(R Core Team, 2015).

Land use regression
Source-specific emissions and their trends were
assessed using land use terms as predictors in the
regression models. The land use parameters included
percent developed spaces with high (dh), medium
(dm), or low (dl) intensity, percent developed open
spaces (dop), percent agricultural space (arg), percent
deciduous forest (df), percent evergreen forest (ef),
percent mixed forest (mf), traffic count weighted for
major road density within 1 km2 (rd), and population
density within 1 km2 (pop). In addition, we also created
an indicator variable (ind) identifying the presence of
major industrial sources in each 1 km × 1 km cell. Land
use terms are surrogates for emissions and their rela-
tionship to emissions may change over time as, for
example, pollution controls are implemented that
impact the sources of those emissions. To test for
these trends, we fitted four land use models separately
for the four follow-up periods in the study due to the
fact that some land use terms were only measured once
over time. The four sets of slopes of the land use terms
represent the emission intensity of the corresponding
period, and the differences over follow-up periods
represent their trends. The LUR model (eq 3) was
formulated as follows:

Q ¼ β0i þ β1i dhð Þ þ β2i dmð Þ þ β3i dlð Þ þ β4i dopð Þ
þ β5i argð Þ þ β6i dfð Þ þ β7i efð Þ þ β8i mfð Þ
þ β9i popð Þ þ β10i indð Þ (3)

where i is the study period, Q is the estimated emission,
and the other predictors are as defined above. To test the
significance of the LU-related emission trends (difference
between slopes), we fitted the model below including
emission estimates over the four study periods:

Q ¼ β0 þ
X9

k¼1

βk LUkð Þ þ
X9

k¼1

βk LUk � Periodð Þ (4)

where k is the kth land use variable included in the
LUR model (eq 4) and Period is a continuous variable
of the period number.
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Results and discussion

Regional and state-specific trends in PM2.5

emissions

Regional PM2.5 emission trends in the Northeast U.S.
were estimated by comparing averages of year-round,
cold season (November–April), and warm season
(May–October) PEIRS emissions (Table 1). Across the
entire study period (Period 4 vs. Period 1), year-round
emissions decreased by 18%, which is comparable to
the 11% decrease reported by the NEI during the period
of 2002–2011 (EPA, 2011). The absolute reduction was
more pronounced in the cold season, whereas the per-
centage decrease was larger in the warm season. The
ratio of the regional mean emissions during the cold
versus warm season also increased over time. These
findings imply that current emission control is likely
more effective in the warm season than the cold season.
EPA scientists have similarly reported a generally lower
effectiveness of emission controls during the winter due
to strong weather interference on particle loading in the
past decade (EPA, 2008).

The PEIRS emission trends varied by season and by
location. Among seven Northeast U.S. states, Connecticut
(CT) and Rhode Island (RI) exhibited the largest year-
round PM2.5 emission reduction during the study period

(Table 2, Period 4 vs. Period 1). Furthermore, these two
formerly nonattainment states exhibited a more than
20 tons/yr/km2 decrease in PM2.5 emissions during the
cold season, which was almost twice that seen in the other
five states. As the atmospheric conditions are less favor-
able for secondary particle formation during the cold
season, the high-reduction rates observed in CT and RI
during cold season is attributable to changes in primary
emissions. The significant decrease in PM2.5 emissions
during the cold season began to manifest in Period
3 (2008–2010), after the nonattainment area designation
in 2006 and before the maximum attainment in April
2010. This suggests that the states’ control programs for
primary PM2.5 emissions were effective. However, a num-
ber of factors may also contribute to this reduction. For
instance, the demand for home heating oil in the
Northeast fell by 43% between 2000 and 2012 and may
have led to the declining emission during cold season
(Andrews and Perl, 2014). Improved insulation, furnaces,
and fuel switching from oil to gas may all play a role in
addition to attainment designations. Furthermore, the
observed reduction may be related to the economic reces-
sion during 2008 to 2010. People may tune down their
thermostats lower to save money and lived in colder
houses. This could also explain the increase in emission
from Period 3 (2008~2010) to Period 4 (2011~2013)

Table 1. Regional PEIRS PM2.5 mean triennial-averaged emissions over the four study periods.
Mean emission (tons/yr/km2)

Period Year-round Cold season Warm season

Period 1 (2002–2004) 18.3 33.9 9.4
Period 2 (2005–2007) 17.4 31.1 7.3
Period 3 (2008–2010) 16.0 23.4 9.6
Period 4 (2011–2013) 15.0 26.4 4.4

Mean emission changes (tons/yr/km2, %)

Year-round Cold season Warm season

Period 2 vs. 1 −0.9 (−5%) −2.8 (−8%) −2.1 (−22%)
Period 3 vs. 2 −1.4 (−8%) −7.7 (−25%) +2.3 (+32%)
Period 4 vs. 3 −1.0 (−6%) +3.0 (+13%) −5.2 (−54%)
Period 4 vs. 1 −3.3 (−18%) −7.5 (−22%) −5.0 (−54%)

Table 2. Regional PEIRS PM2.5 mean triennial-averaged emission changes (tons/yr/km2, %) by state.
Period New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island

Year-round
Period 2 vs. 1 −0.8 (−5%) −2.2 (−13%) +2.5 (+9%) −2.7 (−9%) −1.1 (−6%) −0.7 (−4%) +2.0 (+5%)
Period 3 vs. 2 −1.8 (−11%) −1.6 (−11%) −5.1 (−18%) −0.4 (−1%) −1.7 (−11%) +1.0 (+6%) −8.5 (−21%)
Period 4 vs. 3 +0.7 (+5%) −1.7 (−12%) −2.5 (−10%) −5.8 (−20%) −1.2 (−8%) −2.7 (−17%) −5.7 (−18%)
Period 4 vs. 1 −2.0 (−12%) −5.5 (−32%) −5.1 (−20%) −8.8 (−28%) −4.0 (−23%) −2.5 (−15%) −12.2 (−32%)

Warm season
Period 2 vs. 1 −0.9 (−12%) −4.5 (−35%) −1.0 (−9%) −1.8 (−15%) −5.2 (−43%) −2.7 (−30%) +0.3 (+2%)
Period 3 vs. 2 +1.4 (+20%) +1.8 (+22%) +2.4 (+23%) +1.1 (+11%) +3.6 (+52%) +4.7 (+72%) +1.0 (+8%)
Period 4 vs. 3 −4.0 (−50%) −6.6 (−65%) −6.9 (−54%) −2.8 (−25%) −7.2 (−68%) −6.4 (−57%) −5.9 (−41%)
Period 4 vs. 1 −3.6 (−47%) −9.3 (−73%) −5.6 (−49%) −3.5 (−29%) −8.7 (−72%) −4.5 (−48%) −4.6 (−36%)

Cold season
Period 2 vs. 1 −3.0 (−10%) −2.8 (−10%) +4.4 (+10%) −4.9 (−9%) +2.1 (+7%) −7.4 (−21%) +3.5 (+5%)
Period 3 vs. 2 −6.9 (−24%) −7.2 (−27%) −13.3 (−28%) −8.2 (−16%) −11.2 (−35%) −5.3 (−19%) −22.9 (−34%)
Period 4 vs. 3 +6.5 (+30%) +2.0 (+10%) −1.5 (−4%) −11.2 (−26%) +2.7 (+13%) +0.3 (+1%) −7.7 (−17%)
Period 4 vs. 1 −3.4 (−11%) −8.0 (−27%) −10.4 (−24%) −24.4 (−43%) −6.4 (−21%) −12.3 (−35%) −27.1 (−42%)
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when the economy started recovering. On the other
hand, the largest long-term reduction in PM2.5 emissions
during the warm season occurred in Vermont (VT; −9.3
tons/yr/km2, −73%) followed by New Hampshire
(NH; −8.7 tons/yr/km2, −72%). Although drivers for the
faster reduction rate in VT and NH during the warm
season are unknown, the NEI reported larger percentage
decreases in precursor gases (SO2 and nitrogen oxides
[NOx]) than in primary PM2.5 emissions in VT and NH
during 2002–2011 (Table 3), which implies more rapid
reduction in secondary particles than primary sources in
less urbanized states.

Since the Emission Inventory System (EIS), a new
tool with enhanced data collection approach than the
past, was first used in the 2008 cycle (EPA, 2012), we
were able to calculate the short-term trends of NEI
between 2008 and 2011 and compare it with the
PEIRS emission trends at corresponding periods
(Periods 3–4; Table 4). Similar percent changes were
observed in the states of New York, Vermont, and New
Hampshire. The PEIRS trends show rapid reduction in
Massachusetts, Connecticut, Maine, and Rhode Island,
whereas the NEI trends exhibit less decrease or slight
emission growth. We suspect that trend of secondary
formation may result in the differences between the
PEIRS and NEI trends. However, the underlying
mechanisms of the disparities would require further
investigation.

Spatial patterns and trends of PM2.5 emissions

One of the advantages of satellite-based emission
inventories is ample spatial information that allows
visualization of the locations where reduction or
growth occurred and consideration of appropriate

emission control strategies. For year-round PM2.5 emis-
sions (Figure 2), urban areas such as the Greater Boston
area and New York City exhibited a clear downward
trend whereas rural trends were more difficult to deter-
mine. As discussed in the previous study (Tang et al.,
2016), the PEIRS emission estimates in areas in the
vicinity to water surfaces have larger uncertainties due
to compromised AOD data. We observed potentially
problematic emissions near Burlington, VT, due to
interference from Lake Champlain. A similar problem
occurred in Rochester, Syracuse, and areas bordering
the Finger Lakes in New York. Relatively higher frac-
tion of secondary particles involving complex reactions
among precursor gases may provide another plausible
explanation for the variations in emission trends in less
urbanized areas. In particular, NH3, NOx, and VOC
emissions were reported to be high in rural areas
according to the 2011 NEI report (EPA, 2011). The
NEI also found that significant reductions in NOx,
VOC, and SO2 have been achieved over time whereas
NH3 emissions remained fairly constant. The uneven
changes in these gas pollutants could modulate emis-
sion trends and spatial patterns significantly.

Cold season PM2.5 emissions (Figure 2) generally
showed similar spatial trends to those of the year-
round emissions. In addition to the apparent decrease
in emissions in metropolitan areas over time, reduction
in important traffic corridors became more discernible
during the cold season as well (i.e., Route 90 in the
middle of the New York State). This indirectly supports
the EPA inference that periodic method and data
improvements used in the NEI are the main reasons
for the observed increase in vehicle emissions in 2005
and 2008 NEI (EPA, 2008, 2011). In contrast, warm
season PM2.5 emissions (Figure 2) were distributed

Table 3. NEI 10-year emission trends (%) for PM2.5,* NOx, SO2, VOCs, and NH3 in the Northeast U.S., 2002–2011.
Pollutant New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island

Year-round
PM2.5 −25% to −50% −0% to −25% −25% to −50% −0% to −25% −25% to −50% −25% to −50% +25% to +50%
NOx −25% to −50% −50% to −75% −50% to −75% −50% to −75% −50% to −75% −25% to −50% −25% to −50%
SO2 −50% to −75% −50% to −75% −75% to −100% −50% to −75% −75% to −100% −50% to −75% −50% to −75%
VOCs −25% to −50% −0% to −25% −25% to −50% −25% to −50% −25% to −50% −25% to −50% −0% to −25%
NH3 −0% to −25% −0% to −25% −25% to −50% −25% to −50% −0% to −25% −0% to −25% +50% to +75%

Note. PM2.5 = particulate matter <2.5 μm diameter; NOx = nitrogen oxides; SO2 = sulfur dioxide; VOCs = volatile organic compounds; NH3 = ammonia.
*NEI PM2.5 consists of primary sources only.

Table 4. Percentage changes of PEIRS emissions from Period 3 to Period 4 and percentage changes of NEI emissions from 2008 to
2011.
Model Period New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island

PEIRS (All seasons) Period 4 vs. 3 +5% −12% −10% −20% −8% −17% −18%
NEI 2011 vs. 2008 +1% −7% +3% +2% −9% −5% −4%
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rather uniformly, with miniscule urban versus rural
disparity. The onset of emissions reduction did not
manifest during the warm season until the last period
(2011–2013) measured. The difference between cold
and warm season PM2.5 emission trends implies a sig-
nificant association between weather and total emis-
sions and warrants further assessment of emission
trends separately by season.

Quantile trends on PM2.5 emission sources

To more closely investigate the large spatial variability of
PM2.5 emissions, we applied quantile regression models
on emission inventories year-round (Figure 3a) and in the
warm season (Figure 3b) and the cold season (Figure 3c)
to quantify trends for a wider range of emission distribu-
tion. The quantile trend showed an exponential increase
in the rate of reduction above the 80th percentile in year-
round PM2.5 emissions (Figure 3a). This result is
consistent with our qualitative evaluation of the spatial
trends (Figure 2) where reduction was most apparent in

urban areas (higher quantile) and gradually tapered off
in suburban and rural areas (lower quantile). The cold
season quantile-specific trend was similar to that of the
year-round quantile trend, but with larger deviance from
the mean trend overall. This implies that urban-related
PM2.5 emission sources play an important role year-
round but become considerably stronger in cold weather.
On the other hand, the warm season quantile regression
rate of change was similar throughout the distribution
except for a weakening reduction rate below the 20th
percentile, which, given how much lower emissions
were in the warm season, represents areas that are quite
clean already. The uniformity suggests little urban-rural
contrast during the warm season, and that the warm
season reduction is likely more attributable to sources
that are not particularly urban-related, such as regional
sources or secondary formation, which are expected to be
more pronounced during warm season. This is in agree-
ment with the state-specific trend where less urban states
such as VT and NH showed the most reduction in PM2.5

emissions during warm season (Table 3).

Figure 2. Year-round triennial-averaged PM2.5 emission estimates during (a) Period 1, (b) Period 2, (c) Period 3, (d) Period 4 in the
Northeast U.S. Cold season triennial-averaged PM2.5 emission estimates during (e) Period 1, (f) Period 2, (g) Period 3, and (h) Period 4
in the Northeast U.S. Warm season triennial-averaged PM2.5 emission estimates during (i) Period 1, (j) Period 2, (k) Period 3, and (l)
Period 4 in the Northeast U.S.
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Trends in PM2.5 emissions based on land use
regression

Since the PEIRS emissions are not categorized by sources,
we fitted land use regression models to categorize our
emission inventory. Table 5 depicts the land use–specific
PM2.5 emission intensities over the four study periods.
Over the entire study period, substantial reduction in
PM2.5 emissions was achieved across all land use–related
sources. The year-round PEIRS emissions associated with
developed spaces were estimated to reduce at the rate of
40–70% by the end of Period 4. This reduction rate was

even more pronounced in the cold season (Table 6), due to
reduced heating demands, specifically heating oil con-
sumption (Andrews and Perl, 2014), as winter in the north-
eastern part of the U.S. have become warmer (Hayhoe
et al., 2006) and efficiency of insulation and furnaces have
also improved over the past decade. Land use–related
PERIS emissions also decreased in the warm season in
general except for high-intensity developed spaces, which
almost tripled from Period 1 to Period 3 and then
decreased sharply in Period 4 (Table 7). High-intensity
developed spaces represent amixture of land use, including

Figure 3. Quantile PM2.5 emission trends (a) year-round and in the (b) warm season and (c) cold season in the Northeast U.S.

Table 5. Land use-related PEIRS PM2.5 emission intensities (tons/yr/km2) year-round in the Northeast U.S., 2002–2013.
Period Intercept Deciduous forest Mixed forest Evergreen forest Agriculture/pasture Industrial Points

Period 1 (2002–2004) 0.5* −7.2* −6.3* −6.4* 0.1* 1.0*
Period 2 (2005–2007) −3.7* −5.5* −4.5* −5.7* 0.4* 1.7*
Period 3 (2008–2010) 7.2* −9.5* −5.3* −8.2* −0.1* 0.8*
Period 4 (2011–2013) −1.3* −10.2* −8.6* −10.7* 0.1* 0.5*

Developed
Open space

Developed
High intensity

Developed
Medium intensity

Developed
Low intensity Major road Population

Period 1 (2002–2004) 27.3* 19.5* 23.4* 8.4* 9.8E-05* 4.05E-04*
Period 2 (2005–2007) 26.7* 23.2* 27.6* 9.2* 8.3E-05* 4.68E-04*
Period 3 (2008–2010) 20.3* 21.4* 20.7* 9.7* 8.4E-05* 4.88E-04*
Period 4 (2011–2013) 14.7* 11.3* 11.9* 2.5* 6.1E-05* 3.35E-04*

Note. Unit of the land use–related PEIRS emission intensity has a general form of tons/yr/km2/unit of land use.
Unit of land use variables:
1. % land cover inside 1 km × 1 km grid—Deciduous forest, Mixed forest, Evergreen forest, Agriculture/pasture, Developed open space, Developed high,
medium, and low intensity

2. km × no. of vehicles inside 1 km × 1 km grid—Major Road
3. No. of person inside 1 km x 1 km grid—Population
*Statistically significant in the trend test.
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commercial, industrial, and residential. The source profile
for this geographic setting is complex; therefore, identifying
the causes of this emission trend can be difficult. Regarding
the transportation sector, emission from a vehicle that
traveled 10,000 miles annually declined from an averaged
year-round contribution of 1.58 to 0.98 tons/yr/km2 over
the past 12 yr (Table 5). Traffic-related PEIRS emission
trends appeared to be consistent throughout the year with
little seasonal variance. Furthermore, emissions from large
industrial point sources such as power plants have declined
despite the increasing energy demands. Population-related
PEIRS emission fell substantially during cold season; how-
ever, during warm season, population input has little
change over the decade—emission fell during the recession
and then bounced back. Finally, for the forest categories,
we found negative slopes in general, which indicates a net
loss of particles due to more removal of PM2.5 by plants,
including interception and absorption (Nowak et al., 2013),
than their biogenic emissions or resuspensions. The slopes

of the forests, specifically deciduous forest, are more nega-
tive during cold season due to fewer or no leaves on the
trees and thus less biogenic emissions (Megaritis et al.,
2013). The land use regression results show that the
removal mechanism of the forests became gradually stron-
ger over the study period. However, since the removal
mechanism may act synergistically with the weather,
meteorological variations could be a confounding factor
for the reduction observed in the forest categories.

Conclusions

In this paper, we constructed and analyzed the trends of
satellite-based PM2.5 emission inventories from 2002 to
2013 in the northeastern region of the U.S. PM2.5 emissions
in that region declined over the past 12 yr, with major
reductions achieved for almost all land use–related sources.
Results from the quantile regression results are in agree-
ment with the spatial trends where most reductions were

Table 6. Land use–related PEIRS PM2.5 emission intensities (tons/yr/km2) during the cold season (November–April) in the Northeast
U.S., 2002–2013.
Period Intercept Deciduous forest Mixed forest Evergreen forest Agriculture/pasture Industrial points

Period 1 (2002–2004) 18.8* −14.3* −9.7* −12.6* −0.9 0.6*
Period 2 (2005–2007) 0.2* −7.6* −5.9* −7.2* +0.05 2.9*
Period 3 (2008–2010) 14.4* −11.5* −8.7* −12.0* +0.1 0.9*
Period 4 (2011–2013) 9.3* −19.4* −17.9* −20.0* +0.05 0.6*

Developed
Open space

Developed
High intensity

Developed
Medium intensity

Developed
Low intensity Major road Population

Period 1 (2002–2004) 34.7* 21.3* 32.1* 9.7* 1.7E-04* 6.63E-04*
Period 2 (2005–2007) 38.0* 23.8* 39.2* 17.8* 1.4E-04* 4.78E-04*
Period 3 (2008–2010) 27.2* 23.9* 27.5* 11.4* 1.2E-04* 6.30E-04*
Period 4 (2011–2013) 8.9* 8.8* 5.5* −0.7* 0.5E-04* 2.72E-04*

Note. Unit of the land use–related PEIRS emission intensity has a general form of tons/yr/km2/unit of land use.
Unit of land use variables:
1. % land cover inside 1 km × 1 km grid—Deciduous forest, Mixed forest, Evergreen forest, Agriculture/pasture, Developed open space, Developed high,
medium, and low intensity

2. km × no. of vehicles inside 1 km × 1 km grid—Major Road
3. No. of person inside 1 km x 1 km grid—Population
*Statistically significant in the trend test.

Table 7. Land use–related PEIRS PM2.5 emission intensities during the warm season (May-October) in the Northeast U.S., 2002–2013.
Period Intercept Deciduous forest Mixed forest Evergreen forest Agriculture/pasture Industrial points

Period 1 (2002–2004) 3.4* -4.0* 0.5* -0.7* 0.3* 0.7*
Period 2 (2005–2007) 1.4* -4.5* -3.0* -3.1* 0.4* 0.1*
Period 3 (2008–2010) 6.1* -7.8* -1.4* -4.3* 0.0* 0.8*
Period 4 (2011–2013) 0.6* -4.5* -2.8* -4.5* 0.01* -0.2*

Developed
Open space

Developed
High intensity

Developed
Medium intensity

Developed
Low intensity Major road Population

Period 1 (2002–2004) 7.6* 3.4* 8.0* 4.2* 4.8E-05* 3.03E-04*
Period 2 (2005–2007) 8.8* 9.9* 10.9* 0.5* 1.4E-05* 2.20E-04*
Period 3 (2008–2010) 5.6* 11.8* 7.6* 2.6* 3.4E-07* 1.85E-04*
Period 4 (2011–2013) 6.5* 6.4* 5.2* -1.2* 2.7E-05* 2.64E-04*

Note. Unit of the land use–related PEIRS emission intensity has a general form of tons/yr/km2/unit of land use.
Unit of land use variables:
1. % land cover inside 1 km × 1 km grid—Deciduous forest, Mixed forest, Evergreen forest, Agriculture/pasture, Developed open space, Developed high,
medium, and low intensity

2. km × no. of vehicles inside 1 km × 1 km grid—Major Road
3. No. of person inside 1 km x 1 km grid—Population
*Statistically significant in the trend test.
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identified in urban areas or along important traffic corri-
dors, particularly during the cold season. Seasonal varia-
tions in PM2.5 emissions were distinguishable in all analyses
performed in this study, and future efforts will continue to
elucidate the underlying mechanisms for these seasonal
differences in order to improve the efficacies of emission
control strategies.
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