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TECHNICAL PAPER

Developing particle emission inventories using remote sensing (PEIRS)
Chia-Hsi Tanga, Brent A. Coullb, Joel Schwartza, Alexei I. Lyapustinc, Qian Dia, and Petros Koutrakisa

aDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; bDepartment of Biostatistics, Harvard
T.H. Chan School of Public Health, Boston, MA, USA; cGoddard Space Flight Center, NASA, Greenbelt, MD, USA

ABSTRACT
Information regarding the magnitude and distribution of PM2.5 emissions is crucial in establish-
ing effective PM regulations and assessing the associated risk to human health and the
ecosystem. At present, emission data is obtained from measured or estimated emission factors
of various source types. Collecting such information for every known source is costly and time-
consuming. For this reason, emission inventories are reported periodically and unknown or
smaller sources are often omitted or aggregated at large spatial scale. To address these
limitations, we have developed and evaluated a novel method that uses remote sensing data
to construct spatially resolved emission inventories for PM2.5. This approach enables us to
account for all sources within a fixed area, which renders source classification unnecessary.
We applied this method to predict emissions in the northeastern United States during the
period 2002–2013 using high-resolution 1 km × 1 km aerosol optical depth (AOD). Emission
estimates moderately agreed with the EPA National Emission Inventory (R2 = 0.66–0.71, CV =
17.7–20%). Predicted emissions are found to correlate with land use parameters, suggesting that
our method can capture emissions from land-use-related sources. In addition, we distinguished
small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In
essence, this study demonstrates the great potential of remote sensing data to predict particle
source emissions cost-effectively.

Implications: We present a novel method, particle emission inventories using remote sensing
(PEIRS), using remote sensing data to construct spatially resolved PM2.5 emission inventories. Both
primary emissions and secondary formations are captured and predicted at a high spatial resolu-
tion of 1 km × 1 km. Using PEIRS, large and comprehensive data sets can be generated cost-
effectively and can inform development of air quality regulations.
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Introduction

Fine particulate matter (PM2.5) is a major public health
burden associated with a range of adverse health effects
(Schwartz and Dockery, 1992; Schwartz, 2001; Pope et al.,
2002; Schwartz, Laden, and Zanobetti, 2002; Ren,Williams,
and Tong, 2006; Zanobetti and Schwartz, 2006; Turner
et al., 2011; Lepeule et al., 2012). As such, identifying
particle sources and quantifying their emissions is of para-
mount importance to the development of air quality stan-
dards and the enforcement of emission reduction policies.
The U.S. Environmental Protection Agency (EPA) is
responsible for developing a nationwide particle emission
inventory, the National Emission Inventory (NEI) (EPA,
2008, 2011), which is the most comprehensive database for
criteria air pollutants (CAP) and hazardous air pollutants
(HAP) emissions. The NEI is updated every 3 years using
data collected from state, local, and tribal air agencies and

EPA emission trading programs. Collecting information
on area and mobile emission sources can be challenging,
especially when there are many small sources widely dis-
persed over a large area. For instance, smaller stationary
sources such as wood furnaces and stoves are not defined
as major point sources in the NEI and thus are not rigor-
ously regulated. However, these smaller sources may repre-
sent a large fraction of the total emissions as bigger
industrial sources decrease in intensity due to strict regula-
tions and improved technology. For PM, the current NEI
aggregates mobile sources and nonindustrial sources at
county level. Information for such broad geographic
areas, in combination with measurement error and model-
ing uncertainties, may limit effectiveness to implement
emission regulations. Coarse spatial resolution also limits
the utility of the NEI data to assess human health risks or
develop air pollution models (EPA, 2008).
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Satellite data is increasingly important for air pollu-
tion exposure assessment because of scarce and ad hoc
spatial–temporal coverage of the federal monitoring
network. Satellite data have been incorporated in a
variety of air quality applications, including tracking
long-term pollution transport, identifying exceptional
events such as wildfires, fireworks, and dust storms,
and estimating ground-level pollution concentrations
(Duncan et al., 2014). Satellite-based sensors have pro-
vided information on important air pollutants, such as
nitrogen dioxide (NO2), sulfur dioxide (SO2), volatile
organic compounds (VOCs), and fine particulate mat-
ter (PM2.5) (Martin, 2008). Specifically, a growing num-
ber of studies have successfully employed aerosol
optical depth (AOD) data to characterize properties
and patterns of PM2.5 (Gupta and Christopher, 2009;
Liu, Paciorek, and Koutrakis, 2009; Kloog et al., 2011;
Lee et al., 2012; Hu et al., 2014; Kloog et al., 2014).

AOD is a dimensionless measure of the attenuation
of light due to the presence of aerosols that prevent
light transmission via absorption or scattering. This
fundamental property of AOD, with proper correction
for absorption and scattering of gases in the atmo-
sphere, makes it a suitable surrogate for the aerosol
loading in the atmosphere (Hoff and Christopher,
2009). Nevertheless, vigilant calibration of the AOD
data is required due to several physical differences
among AOD and ground-level PM2.5. A critical con-
cern is that AOD represents the total amount of aero-
sols in the entire atmospheric column while measured
PM2.5 only reflects particles at ground level. The rela-
tionship between AOD and PM2.5 is therefore highly
dependent on the vertical distribution of aerosols.
Moreover, like all satellite measurements, AOD read-
ings are snapshots of the aerosol distribution at that
exact moment, while filter-based PM2.5 samples are
collected over a 24-hr period. This temporal mismatch
also influences the association between AOD and
ground-level PM2.5. To address these concerns, multi-
ple techniques including neural network, generalized
additive models, and hybrid models have been used to
generate AOD-derived PM2.5 concentrations (Gupta
and Christopher, 2009; Lee et al., 2012; Hu et al.,
2014; Kloog et al., 2014). Recent advancements in var-
ious predictive statistical models (Kloog et al., 2014)
have enabled scientists to assess daily PM2.5 exposures
with continuous spatial coverage, which are crucial for
legislation development and health effects studies.
Nonetheless, satellite data have yet to become a prime
resource in predicting particle emissions.

In this study, we introduce a method using satellite
AOD data to predict emission inventories for PM2.5. As a
demonstration of the proposed method, we constructed

spatially resolved PM2.5 emission inventories in the U.S.
Northeast using 1 km × 1 km daily AOD retrievals during
the period of 2002–2013. We derive the emission model
based on the concept of one compartment model, which
has been applied to the ambient environment in the past
to estimate emission fluxes (EPA, 2001), as well as indoor
emission sources (Spengler, Samet, and McCarthy, 2001).
Our approach has the potential to generate comprehen-
sive emission inventories cost-effectively as compared to
the existing ones.

Methods

Data and materials

PM2.5 ground monitoring concentration data
The study domain is the U.S. Northeast, which includes
the states of Connecticut (CT), Massachusetts (MA),
Maine (ME), New Hampshire (NH), New York (NY),
Rhode Island (RI), and Vermont (VT). We obtained
daily averaged PM2.5 measurements, mostly from inte-
grated filter samples, measured at 124 monitoring sites
among those of the U.S. Environmental Protection
Agency (EPA) Compliance Network, Air Quality
System (AQS), and the Interagency Monitoring of
Protected Visual Environments (IMPROVE) database
during the period of 2002 to 2013. Daily averaged
monitoring PM2.5 is used to calibrate AOD data into
AOD-derived-PM2.5 concentrations (Figure 1).

Satellite aerosol optical depth
The Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument on board the Earth Observing
System (EOS) Aqua satellite provides numerous aerosol
measures including AOD product reflecting fine parti-
cle loading. In 2011, an advanced algorithm,the Multi-
angle Implementation of Atmospheric Correction
(MAIAC), was presented (Lyapustin et al., 2011) pro-
viding a set of AOD product with much finer resolu-
tion (1 km × 1 km) compared to the standard MYD04
product at 10 km × 10 km resolution. A study evaluat-
ing the MAIAC AOD product concluded that it is more
robust under partly cloudy conditions with fewer non-
retrieval days and pixels than the standard product. For
this reason, MAIAC AOD also provides improved abil-
ity in capturing spatial patterns of particle loading
(Chudnovsky et al., 2013). Furthermore, calibration of
the MAIAC AOD product was shown to be successful
for the New England area (Kloog et al., 2014). In this
study, we took advantage of the MAIAC AOD Aqua
product to predict spatially resolved (1 km × 1 km)
emission inventories.
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Meteorological data
Meteorological parameters such as vertical (VWND)
and horizontal wind speed (UWND), relative humidity
(RH), boundary layer height (PBL), snow coverage,
precipitation (PRCP), and temperature (TEMP) for
the period from 2002 to 2013 were obtained from the
National Oceanic and Atmospheric Administration
(NOAA) North America Regional Reanalysis (NARR)
database. This data set assimilates multiple sources of
measurements and optimizes estimation of meteorolo-
gical fields as described by Kalnay et al. (1996). The
reanalysis dataset provides meteorological variables at a
spatial resolution of 32 km × 32 km and temporal
resolution of 1 day. The PBL is used to estimate the
columnar volume of air on a given day, and other
meteorological variables are used to calibrate the
AOD/PM2.5 relationship. All NARR daily meteorologi-
cal variables were linearly interpolated to 1 km × 1 km
resolution for this study using a MATLAB package,
scatteredInterpolant. More detail on the package algo-
rithm can be found in the MathWorks online docu-
mentation (http://www.mathworks.com/help/matlab/
ref/scatteredinterpolant-class.html).

In building the emission prediction model, surface
level wind speed is used to estimate the residence time
of air mass inside a volume of 1 km × 1 km × PBL km,
while wind direction is the key factor to identify the
location of the upwind adjacent grid cell. After inter-
polating both wind field parameters into 1 km × 1 km

resolution as already described, we calculated wind
speed (WS) as the square root of sum of u2 and v2

and wind direction (WD) as the vector sum of UWND
and VWND. We assumed that the daily wind direction
and wind speed were constant within at all altitudes at
the surface level defined by the NOAA land surface
model (Mesinger et al., 2006).

Land use variables
Traffic-related variables including major roads (A1–A3)
density and other roads (A4) density were gathered from
the StreetMap USA database. Roads were classified using
the Feature Class Code (A1–A4) from the U.S. Census
Bureau Topologically Integrated Geographic Encoding
and Referencing (TIGER) system. Annual averaged traffic
count for major roads was obtained from the Highway
Performance Monitoring System (HMPS) database. We
used a Kernel density algorithm to calculate grid (1 km ×
1 km) averages of the major traffic density parameters
using ESRI ArcMap software. Land cover data for the
entire U.S. Northeast were obtained from the 2011 collec-
tion of the National Land Cover Database (NLCD). With
more detailed classification of land use, land cover data for
Massachusetts were also gathered from the Massachusetts
Department of Environmental Protection (Mass DEP).
Elevation raster data was obtained from the ESRI database.
All land use parameters except elevation were used only for
emission validation and are excluded from both AOD/
PM2.5 calibration and the emission model.

Figure 1. Study area and EPA monitoring network.

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION 55

http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-class.html
http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-class.html


NEI emission data
Point, nonpoint, and mobile emissions were obtained
from the 2008 and 2011 U.S. EPA emission inventories.
According to EPA’s definition, point emission contains
larger industrial sources while nonpoint emission refers
to smaller stationary sources that are inventoried at
county level. Such sources (or sectors) include residen-
tial wood combustion, field burning, consumer solvent
use, and so on. Mobile sources pertain mostly to trans-
portation emissions such as from road traffic, locomo-
tives, aircraft, and commercial marine vessels. Detailed
sector descriptions can be found in the 2008 NEI report
(EPA, 2008). For this study, we aggregated the non-
point and mobile EPA NEI emission data to evaluate
the predicted particle emissions. The locations of NEI
point emissions were intersected with the correspond-
ing 1 km × 1 km AOD grid cell. A variable indicating
the presence of NEI point sources was created and was
included in the land use regression validation models.

Statistical analysis

The particle emission inventories using remote sensing
(PEIRS) approach encompasses three analytical stages:
First, we calibrated AOD to obtain AOD-derived PM2.5

predictions for all 1 km × 1 km grids in the study
domain. Second, we fitted an emission model for each
grid cell to predict emissions released within the grid.
Third, we deployed land use regression models and
compared county-level predicted and NEI-reported
emissions to evaluate our method.

AOD/PM2.5 calibration
Let us consider an air mass enclosed in a box with a
base of 1 km × 1 km (pixel area) and a height equal to
that of the boundary layer (PBL). We can assume that
AOD is proportional to the particle mass inside this
box based on the previously established relationship
between AOD and fine particles (Hoff and
Christopher, 2009). Subsequently, we can express the
particle mass as the product of the average particle
concentration (CPM2.5) and the box volume:

AOD / MassPM2:5 ¼ CPM2:5 � Volume

¼ CPM2:5 � PBL� Pixel Area (1)

Since the pixel area remains constant (1 km2) and most
particles are usually below the boundary layer, we can
translate the relationship in eq 1 into the basis of a
calibration model as follows:

CPM2:5 ¼ β0 þ β1
AOD
PBL

(2)

where β0 is the intercept and β1 is the slope or conversion
factor of the simple calibration model. Because PBL,
relative humidity, and particle composition vary daily,
we performed daily calibrations using a mixed-effects
regression model. Including random slopes (α1i, i: day)
and intercepts (α0i) by day enables the model to capture
day-to-day variability in the AOD/PM2.5 relationship
(Lee et al., 2012; Kloog et al., 2014). Relative humidity
(RH), wind speed (WS), snow coverage, precipitation,
temperature (Temp), and elevation are also included as
covariates to adjust for site-specific characteristics. We
also added interaction terms between AOD and all
meteorological parameters to further control their effects
on particle extinction efficiency. However, we did not
include any source-related land use here because AOD-
derived-PM2.5 concentrations are used to estimate emis-
sions. For this reason, source-related parameters should
be excluded from the calibration process. The final cali-
bration model is as follows:

CPM2:5 ¼ α0i þ β0 þ α1i þ β1
� �AOD

PBL
þ β2WSþ β3RH

þ β4Tempþ β5Snow Coverageþ β6Elevation

þ β7Precipitationþ β8Temp� AOD
PBL

þ β9Snow Coverage� AOD
PBL

þ β10RH � AOD
PBL

þ β11WS� AOD
PBL

þ β12Precipitation� AOD
PBL

(3)

Subsequently, a 10-fold cross-validation is conducted to
evaluate the calibration model (eq 3). To perform cross-
validation, data from the monitoring stations are ran-
domly separated into a 10% held-out set and a 90% train-
ing set. The calibration is a supervised linear regression
model fitted based on the 90% training set and thereafter
to predict the 10% held-out data. The same procedure is
repeated 10 times until all data are predicted once. We
then compare the calibrated prediction to the observed
PM2.5 concentration and examine the variability explained
by the prediction (R2) and bias (slope and intercept). The
difference in R2 between the 10-fold calibration and train-
ing (where all data are used to fit the model) should be less
than 10%; otherwise, the model is likely overfitted. After
careful evaluation, we obtained AOD-derived-PM2.5 con-
centrations for all 1 km × 1 km cells in the study domain.

Emission model
We considered each box as a single compartment and
modeled PM2.5 concentration (C) using the mass bal-
ance concept as illustrated in Figure 2:
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dC tð Þ
dt

¼
X

Sources�
X

Sinks (4)

Within a box, particles are transported from upwind
cell (s) (Cu, PM2.5 concentration in the upwind cell) or
released by sources located inside the box (local emis-
sions). This includes primary emissions from local
sources, as well as formation of secondary particles
from precursor gases emitted from local or distant
sources. On the other hand, particle losses (sinks)
within an atmospheric column are due to dry deposi-
tion (d), wet deposition (w), and air exchange (α)
transport to the downwind cell. Wet deposition is not
accounted for in this model because we omitted AOD
retrievals during days with rain or clouds. As previously
stated, we used PBL to estimate the volume of each 1
km × 1 km cell, and thus the predicted local emission Q
is expressed in tons per square kilometer per year.
Moving forward, we discuss particle transport and
model derivation in two-dimensional space.

dC tð Þ
dt

¼ αCu þ Q
PBL

� αþ dð ÞC tð Þ � dCu (5)

Since dry deposition is usually considerably slower than
the air exchange rate (Donateo and Contini, 2014), we
can simplify the mass balance equation by neglecting
dry deposition:

dC tð Þ
dt

¼ αCu þ Q
PBL

� αC tð Þ (6)

Assuming equilibrium, we can solve the differential eq
6 and obtain the following solution:

C ¼ Cu þ Q
α� PBL

þ C1e
�αt (7)

In addition, if we assume that the transported pollution
Cu is independent of local emissions Q, and the inte-
gration constant (C1), we can simplify eq 7 by assuming
C1 equals zero:

C ¼ Cu þ Q
α� PBL

(8)

Particle transport primarily occurs between two neigh-
boring cells, as shown in Figure 2. However, emissions
may travel further depending on the wind speed and

elevation of the source. Given the fine resolution
(1 km × 1 km cells) of this study, transported emission
is likely traveling from further than one upwind cell. In
fact, PM2.5 concentrations of upwind cells within 3 km
distance strongly correlate to the concentration of the
corresponding downwind cell. For this reason, three
upwind cells are included in the emission model to
account for all transported particles. The algorithm
used to locate upwind cell(s) depends on wind direc-
tion in the downwind cell, as illustrated in Figure 3.

In addition to the within-cell emission, secondary
particles are formed from gaseous emissions originated
from sources situated within and outside the downwind
cell. In order to control for the secondary particles
formed outside the downwind cell and not captured
by the upwind cell concentrations, we include tempera-
ture (K) in our model as a surrogate of the various
weather parameters associated with particle formation
(Vehkamaki and Riipinen, 2012):

C ¼
X3

i¼1

ðCui � TemperatureÞ þ Q
α� PBL

(9)

We fitted the preceding model (eq 9) to predict emis-
sions, Q, for all 1 km × 1 km cells within the study
domain.

Land use regression
Since emissions are often closely related to land use
parameters, we fitted land use regression (LUR) models
to examine relationships between model predictions
(Q) and source types, which is an indirect approach
to evaluate PEIRS. The land cover data from Mass DEP

Figure 2. Box model dynamics.

Figure 3. Example of upwind cells identification. wd, Wind
direction; N, north; NW, northwest; W, west.
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provides a more detailed classification than that of the
NEI. Therefore, we fitted a land use model specifically
for Massachusetts to examine potential relationships
between model predictions and different land cover
types. In addition, we also included point emission
estimates from the NEI in the LUR model to account
for industrial or larger point sources that may not be
included in the land use database. Toward this end, we
included an indicator variable for point emission in the
LUR models to determine whether higher Q values are
associated with major point sources inside the 1 km × 1
km grid cell.

County-level evaluation model
U.S. EPA reports PM emission from all sources at the
county level, and for this reason, we averaged our 12-
year-averaged emission predictions by county and
compared them to the county NEI emission densities
as a secondary validation (eq 10). We performed two
county-level evaluations using NEI 2008 and 2011,
respectively. In addition, we conducted state-specific
evaluations to examine differences among model pre-
dictions and NEI emissions. Although a better evalua-
tion is to compare annual PEIRS emissions to the NEI
in corresponding years, we currently do not predict
annual emissions with the PEIRS model. The reason
is that annual emission predictions could be biased due
to imbalanced data since missing in AOD occurs
seasonally.

NEI Emission ¼ β0 þ β1Qcounty averaged þ � (10)

Results and discussion

AOD/PM2.5 calibration performance

Table 1 depicts the performance of AOD/PM2.5 calibra-
tion. The model training R squared (0.85) is moderately
high, suggesting that the calibration model was well
fitted. The cross-validation analysis demonstrated that
model predictive accuracy is high for temporal varia-
bility (R2 = 0.80) and moderate for spatial variability
(R2 = 0.66). Among AOD-PM2.5 calibration models,
that of Kloog et al. has so far the strongest predictive
power (temporal R2 = 0.87, spatial R2 = 0.87; Kloog
et al., 2014). While the temporal predictability is similar

between our calibration and that reported by Kloog
et al., our spatial predictability is much lower. A possi-
ble reason for this difference is that Kloog et al. used a
hybrid approach that includes not only meteorological
covariates and elevation, but also many other land use
variables, which are crucial PM25 predictors enhancing
spatial predictability. As previously stated, the major
goal of our model is to predict emissions based on
remote sensing data, and it would not be appropriate
to include source-related covariates such as land use
terms.

Predicted emissions

Figure 4 depicts emissions predicted over the period of
2002 to 2013 in the U.S. Northeast. We observed emis-
sion hotspots with more than 35 tons/year/km2 in most
highly populated areas such as Boston, MA, New York
City, NY, and Long Island. In addition, we observed
transportation emissions along major highways. Finally,
we predicted low emission levels for rural areas (<20
tons/year/km2).

Figure 5 shows the estimated emissions, land cover,
and population distributions in the Greater Boston,
MA, New York, NY, and Providence, RI, areas. In
general, we found similar spatial patterns among highly
populated areas such as Greater Boston and New York,
reflecting typical urban activities. PEIRS predicted high
emissions levels in developed areas (Figures 5d and 5e,
colored red) in eastern Boston, New York City, and
Long Island areas, with a mixture sources including
residential heating, transportation, industrial, and com-
mercial activities. More importantly, we were able to
capture intra-urban variation. For example, we pre-
dicted lower emissions for eastern Cambridge, MA,
where the Massachusetts Institute of Technology
(MIT) campus is located. As shown in Figure 5a, emis-
sions are noticeably lower (25–30 tons/year/km2) as
opposed to surrounding areas such as Somerville and
western Cambridge. The campus area is less populated
compared to neighboring cities and the school has been
actively promoting green building and energy sustain-
ability programs over the past decade, which both con-
tribute to lower emissions. Furthermore, we predicted
high emissions at densely populated and commercially
active areas in northern Brookline, MA, and lower
emissions at parks, large green spaces, and residential
areas in the southwestern part of the town (Figure 5a).
Our results in New York (Figure 5b) show an intra-
urban spatial pattern of PM2.5 comparable to those
reported by a previous study (Clougherty et al., 2013).
Clougherty et al. found that large combustion boilers
for residential heating, mostly burning oil, are

Table 1. 10-Fold cross-validation: R2 (dimensionless) and RMSE
(μg/m3).

Temporal Spatial

R2 RMSE R2 RMSE

Training performance 0.85 2.56 0.75 0.90
10-Fold cross-validation 0.80 2.85 0.66 1.06
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concentrated in midtown and downtown Manhattan,
NY, as well as in some neighborhoods of Brooklyn and
Queens, NY. These areas are all highly developed with
similar population density and land use. Even sur-
rounded by high-intensity emission sources, we are
able to identify intense oil-burning emissions in some

of the grid cells that exceeded 60 tons/year/km2 in these
neighborhoods.

Ourmodel overestimated emissions in areas surrounded
by water surfaces or wetlands, such as Providence, RI, and
southeastern Massachusetts (Figure 5c). For instance, the
model estimated high emissions (20–30 tons/year/km2) in

Figure 4. Estimated emission in U.S. Northeast.

Figure 5. Estimated emission in (a) Greater Boston, MA, (b) New York, NY, and (c) Providence, RI. Land cover type from NLCD 2011
database in (d) Greater Boston, (e) New York, and (f) Providence. Population of year 2000 in (g) Greater Boston, (h) New York, and (i)
Providence.
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some green areas of southeastern Massachusetts where
anthropogenic sources are scarce. The possible overestima-
tion is likely due to bias in AOD readings, as the MAIAC
algorithm was developed to retrieve AOD over land and is
less reliable for retrievals over water surfaces (Lyapustin
et al., 2011). Although we excluded pixels encompassing
bodies ofwater prior, AOD retrieval nearwater or the shore
can still be influenced by high humidity or ocean glint.
Because we estimated PM2.5 concentrations using AOD
data, biases in the AOD are likely to influence the final
emission product as well. However, it is also possible that
some of the predicted emissions are due to primary or
secondary particles from natural sources.

Land use regression

Predicted emissions in the northeast United States are
related to land use variables (R2 = 0.65). Table 2 shows
the predicted land-use-specific emissions where the pre-
dominant sources include developed area (high/medium/
low density and open area), traffic, and population. The
land use regression model predicts that large point
sources emit on average 0.58 tons/year/km2, which is
close to the averaged NEI point emission in 2008 (0.53
tons/year) and 2011(0.26 tons/year). Figure 6a shows the
residuals (25th percentile = –2.7, mean = 0, 75th

percentile = 2.5) of the land use regression model in the
study area. As noted, the Providence, RI, and southeastern
Massachusetts areas have larger residuals (>5 tons/year/
km2), which suggests that either the predicted emissions
are overestimated or they are not correlated to land use
covariates, for example, biogenic sources, biogenic pre-
cursorsm or oceanic particles. Previous studies suggest
that in remote areas most particles are secondary ones
(Kanakidou et al., 2000; Spracklen et al., 2006; Andreae,
2007), which are not accounted for by land use models.

In addition to the national land cover product, we also
incorporated the land cover data classified by the
Massachusetts Department of Environmental Protection
(Mass DEP), and fitted a separate land use model for
Massachusetts. Compared to the national model
(R2 = 0.65), the Massachusetts model has a slightly higher
R2 of 0.67. As shown in Table 3, transportation, developed
area, and population are the larger sources predicted by the
land use model. With a finer classification, we can see the
intra-urban variation related to industrial, residential, and
commercial sources areas, which is not for the NEI data-
base, mostly county-level averages (Figure 7b and 7c). Crop
and livestock farms emissions are 0.7 tons/year/km2, values
similar to those reported by the NEI program. Cranberry
bogs, nurseries, and orchards generate more emissions
than other croplands. Consistent with the results of the
U.S. Northeast land use regression, we observed high resi-
duals in southeastern Massachusetts. As noted earlier, this
may be due to difficulties in measuring AOD near water
bodies, or possibly to the presence of sources whose emis-
sions are independent of land use variables.

County-level evaluation

We found a moderate correlation between predicted
and 2008 NEI emissions (R2 = 0.52, CV = 144%).
The slope and intercept of the 2008 NEI county
model (β1 = 2.6, β0 = –38.7) suggest that the model
underestimated the county-level emissions. Since the

Table 2. LUR estimated emission from different land use for
U.S. Northeast.

Land use type/emission sources

Averaged
emission (ton/

yr/km2)

On road A1–A3 major road 0.4 ~ 28
Developed area High density 13

Medium density 13
Low density 6.7
Open area 5.6

Population 250 people/cell 0.1
10,000 people/cell 2.7

Farms Crop and livestock 0.34
NEI point source (NEI 2008 mean = 0.53) 0.58
Model R2 = 0.65

Figure 6. Residual map of land use regression (LUR) model in (a) the U.S. Northeast and (b) Massachusetts. The residuals are
emissions that are not related to land use parameters.
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NEI emission data are right skewed (median = 4.9,
mean = 11.8), we suspect the large error is due to
extreme values (or outliers) in the NEI data. When
restricting NEI data to less than 50 tons/year/km2, we
obtained a better model fit (R2 = 0.66, CV = 20.0%,
β1 = 0.65, and β0 = –5.6). This suggests that the
model may underestimate the largest emission
sources. The different temporal scale among emission
predictions and NEI estimates could be another
source of uncertainty leading to larger error and a
larger deviation of the intercept. Nonetheless, the
PEIRS method has great potential in predicting emis-
sions at finer temporal scales and would reduce the
temporal inconsistency error. We found similar
results when comparing model emission predictions
to those reported by the 2011 NEI. The model fit was
significantly improved after removing high NEI emis-
sions from the model (R2 = 0.65 → 0.71, CV= 105%
→ 17.9%, β1 = 3.4 → 1.09, β0 = –47.8 → –11.7, all
data → subset). Interestingly, the slope of the county
regression model shows that our model overesti-
mated emissions in comparison to the 2008 NEI,

and slightly underestimated them when in compar-
ison to the 2011 NEI. This is consistent with the
emission changes documented in the 2011 NEI
report, where emissions overall increased by 25 to
250% compared to 2008 due to resuspension of
road dust and more frequent wildfires (EPA, 2011).

Table 4 and Table 5 show the state-specific county-
level evaluation results compared to 2008 and 2011 NEI
data, respectively. We observed fair agreement for
Connecticut and New Hampshire compared to that
for states with large sources such as New York and
Massachusetts. In general, the agreement was improved
when outliers were removed from the analysis.
Predicted emissions were weakly related to NEI data
in Vermont, suggesting that the model is less sensitive
to low-level emission variations. As shown in Figure 7,
for most counties in Vermont both model-predicted
and NEI-reported emissions are low. The relatively
high emissions predicted for Grand Isle County,
Vermont, which is surrounded by Lake Champlain,
may be due to water bias in the AOD. In addition, we
did not find a good agreement for Franklin,
Chittenden, and Addison counties of Vermont where
the model predicts higher emissions (6–15 tons/year/
km2) than those reported by NEI (< 5 tons/year/km2).
However, we found that emissions of particles precur-
sors such as NH3, NOx, and VOC are relatively high in
these three counties according to the NEI 2008 report.

Table 3. LUR estimated emission from different land use for
Massachusetts.

Land use type/emission sources
Averaged emission

(ton/yr/km2)

On road A1–A3 major road 0.4–24.5
Public transit 2.5

Developed area High-density residential 3.6
Medium-density
residential

3.5

Low-density residential 1.8
Multifamily residential 2.1
Open area 2.4
Industrial 4.3
Mining 2.4
Commercial 3.1
Junkyard 4.6

Population 400 people/cell 0.32
10,000 people/cell 8

Farms Crop and livestock 0.7
Cranberry bog, nursery,
orchard gardens

2.2–7.8

NEI point source 1.5
Model R2 = 0.67

Figure 7. (a) Estimated emission vs. EPA NEI nonpoint emission in (b) 2008 and (c) 2011 at county level.

Table 4. Evaluation results of estimated emission vs. EPA NEI
emission 2008 at county level.

R2 CV Slope (β1)
Intercept

(β0)

Connecticut 0.85 6.61% 0.73 –6.8
Maine 0.65 9.11% 0.54 –5.5
New Hampshire 0.86 15.0% 1.44 –15.5
Massachusetts 0.58 (0.87) 75.4% (6.97%) 1.84 (0.47) –26.8 (1.0)
Rhode Island 0.21 13.3% 0.20 5.03
New York 0.58 (0.67) 211.1% (26.3%) 2.99 (0.71) –45.44 (–6.6)
Vermont 0.01 7.45% 0.02 3.40

Note. Values in parentheses are model parameters when data are restricted
to counties with ≤50 tons/yr NEI emission.
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Therefore, it is possible that differences are due to the
formation of secondary particles and high-biomass
burning sources, which are accounted for by the
model but not included in the NEI database. In fact,
counties where predicted emissions are higher than
those reported by the NEI are locations with high
precursor emissions. These include urban counties in
Greater Boston, MA, New Haven, CT, New York City,
NY, and Long Island, NY, as well as agriculture-driven
counties in upper western New York state.

Conclusions

In this paper, we have proposed a newmethod (the PEIRS
approach) to construct spatially resolved emission inven-
tories for fine particulate matter. The predicted emissions
in the U.S. Northeast are in reasonable agreement with
those reported in the 2008 and 2011 NEI. Our model can
capture small-scale intra-urban variations in emissions
and formation of secondary particles. Although inherent
biases from the satellite data, possibly due to humidity
interference and ocean glint, may reduce model accuracy,
generally they manifest in remote areas with little popula-
tion. Future research should examine whether the alleg-
edly higher emissions are due to AOD measurement
artifacts or the presence of secondary particles formed
from biogenic precursors.

Overall, we have demonstrated the potential of satellite
AOD data to predict PM2.5 emissions at a fine spatial scale
(1 km × 1 km). In contrast to conventional methods col-
lecting emission data for known sources, we developed a
model, based on the physical properties of particles, that
captures emissions from all sources within a specific area.
We can take advantage of the breadth of satellite-based
remote sensing data to predict emission with high spatial
and temporal resolution at low cost. As satellite remote
sensing improves, more robust data with better temporal
and spatial resolution will become available for predicting
emissions not just for particles but for different gaseous air
pollutants.
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