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TECHNICAL PAPER

Toward verifying fossil fuel CO2 emissions with the CMAQ model:
Motivation, model description and initial simulation
Zhen Liu,1 Ray P. Bambha,1,⁄ Joseph P. Pinto,2 Tao Zeng,3 Jim Boylan,3 Maoyi Huang,4

Huimin Lei,4,5 Chun Zhao,4 Shishi Liu,6 JiafuMao,6 Christopher R. Schwalm,7 Xiaoying Shi,6

Yaxing Wei,6 and Hope A. Michelsen1
1Combustion Research Facility, Sandia National Laboratories, Livermore, California, USA
2U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, North Carolina, USA
3Georgia Department of Natural Resources, Atlanta, Georgia, USA
4Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
5Department of Hydraulic Engineering, Tsinghua University, Beijing, China
6Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
7School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona, USA⁄Please address correspondence to: DR. Ray Bambha, Combustion Research Facility (CRF), Sandia National Laboratories, 7011 East Ave.,
Livermore, CA 94550, USA; e-mail: rpbambh@sandia.gov

Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate
characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the
Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results
for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to
understand the roles of fossil-fuel emissions, biosphere–atmosphere exchange, and meteorology in regulating the spatial distribution
of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to
assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites
across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall
tower site that receives urban emissions from Denver, CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel
emissions from the Vulcan inventory and CarbonTracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably
well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NOx, SO2, and CO, because
of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the
potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability
to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution.
This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability
and various uncertainties in the future.

Implications: Atmospheric CO2 has long been modeled and studied on continental to global scales to understand the global
carbon cycle. This work demonstrates the potential of modeling and studying CO2 variability at fine spatiotemporal scales with
CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of
these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO2 emissions.
Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO2 as an air
pollutant.

Introduction

CO2 emission verification

The increase of atmospheric CO2 concentrations, as the lar-
gest human-induced climate forcer, is continuing and accelerat-
ing (Canadell et al., 2007). Reducing anthropogenic emissions is

the most effective way to mitigate the resulting climate change
risks. The success of an international collaborative effort in
emissions reduction relies upon accurate information of current
emissions in each country and their change over time (National
Research Council [NRC], 2010). Under the United Nations
Framework Convention on Climate Change (UNFCCC), all
countries are required to report annual anthropogenic emissions
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and removal of greenhouse gases (GHGs), although developing
countries are allowed to report less frequently and in less detail
than Annex I (developed) countries. These self-reported national
emissions inventories, however, are known to have uncertainties
attributable to the incomplete knowledge of the numerous emis-
sion sources or inaccurate national and state statistical data
(e.g., Andres et al., 2012; Guan et al., 2012). Emissions verifica-
tion, which aims at (1) reducing uncertainties in current emis-
sions inventories and (2) monitoring and verifying changes in
emissions over time (NRC, 2010), has emerged as an urgent need
for decision making by policymakers and business leaders
(Marland, 2008; Matthias et al., 2010).

From the perspective of the global carbon cycle, our under-
standing of fossil-fuel emissions is generally believed to be
better than that of natural carbon sources and sinks (Canadell
et al., 2007); there are currently large gaps of knowledge in the
biogeochemistry and physics of the natural carbon cycle (Le
Quere et al., 2009), whereas fossil-fuel emissions are largely
constrained by relatively well-documented global fuel consump-
tion data (Boden et al., 2011). Nevertheless, our understanding
of some important characteristics of fossil-fuel emissions, such
as their spatiotemporal variability, remains elusive (Andres et al.,
2012; Gurney et al., 2009). One unique feature of fossil-fuel
emissions is their extremely uneven spatial distribution. A strik-
ing example pointed out by Marland (2008) shows that even a
tiny amount of uncertainty, that is, 0.9% as estimated by two
independent sources, in one of the leading emitters like the
United States is equivalent to total emissions from a very large
group of smaller emitters in the world, that is, 147 countries out
of 195 countries analyzed. A refined characterization of fossil-
fuel emissions in space and time is necessary for emissions
verification, and is also important for better constraining the
carbon cycle (Peylin et al., 2011; Nassar et al., 2013).

A formal approach to the emissions verification problem is
inverse modeling, which seeks to improve existing emissions
estimates through assimilating information from atmospheric
observations (NRC, 2010). In inverse modeling, a “source–
receptor” relationship, that is, a relationship between concentra-
tions at a “receptor” site and emissions strength from sources, is
first established by modeling CO2 fluxes and atmospheric trans-
port. With such a relationship and observations of CO2 concen-
trations in the atmosphere, an updated emissions estimate with
reduced uncertainties (due to the addition of observational infor-
mation) can be obtained using various estimation techniques
(Tarantola, 2005).

Despite the rigor of the theory behind inverse assimilation,
inverse modeling of atmospheric CO2 has long been challenged
by (1) the sparseness of observational data (e.g., Gurney et al.,
2002) and (2) inaccurate atmospheric transport modeling
(e.g., Prather et al., 2008). The majority of CO2 flux-inversion
studies have focused on natural (i.e., terrestrial biosphere and
oceans) carbon fluxes, which are believed to be much more
uncertain than fossil-fuel emissions. In turn, inverting for fossil-
fuel emissions to achieve the objective of emissions verification
would be challenged by the well-known “signal-to-noise” pro-
blem, namely, the strong, highly variable, but quite uncertain
interference by the biosphere (NRC, 2010). As such, emissions

verification turns out to be a challenging scientific problem of
seeking an optimized combination of state-of-the-art observa-
tional techniques and modeling capabilities to pinpoint and
quantify fossil-fuel emissions signals in the atmosphere. In
order to find an effective and practical observational strategy, a
growing number of observations from ground sites (e.g., Wunch
et al., 2009; McKain et al., 2012), aircraft (e.g., Mays et al.,
2009), and satellites (e.g., Kort et al., 2012) have been examined
for their ability to constrain fossil-fuel emissions. Proxy techni-
ques using isotopologues (e.g., Turnbull et al., 2006; Vogel et al.,
2010; NRC, 2010) and trace-gas species to isolate fossil-fuel
CO2 (e.g., Brioude et al., 2012; Palmer et al., 2006; Turnbull
et al., 2006; Rivier et al., 2006) have also been proposed and
investigated. Nevertheless, these previous observational studies
were limited to a small number of locales, and thus the larger
scale representativeness of their findings is not clear. There is
apparently an urgent need for better interpreting these emerging
observations and optimizing existing observation networks. The
primary motivation of the present study is to answer the question
of whether and how a state-of-the-art regional chemical transport
model (CTM) could help serve such a need and thereby facilitate
emissions verification.

The role of CMAQ—A state-of-the-art regional
chemical transport model

Global three-dimensional (3-D) Eulerian CTMs play a pivotal
role in global carbon-cycle research. Forward modeling analysis
and diagnosis have been applied to understand global CO2 dis-
tributions (e.g., Denning et al., 1995) and transport mechanisms
(e.g., Miyazaki et al., 2008). As a first step in CO2 flux inversion,
global CTMs have been routinely applied to calculate the
concentration-to-flux response functions at numerous sampling
sites around the globe (e.g., Gurney et al., 2002). In recent years,
a need has emerged for resolving finer scale CO2 transport and
variability due to fossil-fuel emissions from urban and point
sources in order to refine regional carbon budgets and verify
emissions estimates. To this end, a regional CTM that has much
higher spatial and temporal resolutions than current global mod-
els (often coarser than 1 degree) must be employed.

Compared to global modeling, high-resolution CO2modeling
on regional scales started relatively recently. Previous efforts
have demonstrated the feasibility of regional CO2 modeling
and shown some promising achievements with a high-resolution
regional CTM. For example, Ahmadov et al. (2007) coupled
the Weather Research and Forecast Model (WRF) with a
diagnostic biospheric model, the Vegetation Photosynthesis
and Respiration Model (VPRM), and demonstrated the ability
of the coupled model WRF-VPRM to capture the effects of the
local land–sea-breeze circulation on CO2 at a coastal site. This
circulation involves transport of CO2 respired from vegetation
during the night out to sea followed by its return the following
day. Other regional modeling studies have identified various
factors that can affect CO2 spatiotemporal distributions, such
as topography (van der Molen and Dolman, 2002), diurnal
variations (Chevillard et al., 2002) and spatial heterogeneity of
biospheric fluxes (Sarrat et al., 2007), covariance of transport
and fluxes (Ahmadov et al. 2009), and so on. Some key

Liu et al. / Journal of the Air & Waste Management Association 64 (2014) 419–435420



requirements for regional CO2 modeling have also been noted,
such as using realistic initial and lateral boundary conditions
(Chevillard et al., 2002), because of the long lifetime of CO2 in
the atmosphere. These regional modeling studies mostly targeted
areas where biospheric sources and sinks of CO2 dominate, and
issues that are of interest for the emissions verification problem,
such as the magnitude and spatial extent of fossil-fuel signals in
atmospheric CO2, were not addressed by these studies. Jacobson
(2008, 2011) has performed high-resolution CO2 modeling on
global-through-urban nested domains to investigate the impact
of local CO2 domes on O3 and particulate matter (PM) pollution.

Lagrangian particle dispersion models (LPDM) have been
widely used in CO2-flux inference (e.g., McKain et al., 2012,
and references therein) on regional to urban scales, because they
can conveniently establish the “source–receptor” relationship
needed for flux inversion. In principle, the two modeling
approaches, that is, Eulerian and Lagrangian modeling, could
be used simultaneously and compliment each other (Pillai et al.,
2012).

The Community Multiscale Air Quality (CMAQ) model is a
widely used regional CTM that was originally developed for
atmospheric-chemistry and air-quality research (Byun and
Schere, 2006). Source attribution of air pollutants has been one
of the main applications of CMAQ (e.g., Hu et al., 2009; Cohan
et al., 2005). Capabilities of forward (i.e., decoupled direct
method, or DDM) (Dunker, 1984; Hakami et al., 2004) and
adjoint (Hakami et al., 2007) sensitivity analysis have also
been developed with CMAQ. Although so far there has been
no effort of simulating CO2 with CMAQ, the highly modular
model structure makes it straightforward to add new chemical
species and modify their processes in CMAQ. Adding CO2 into
CMAQ while retaining other model species enables simulta-
neous simulations and examinations of CO2 and a full suite of
traditionally regulated air pollutants. Because there is abundant
observational information and emissions-reduction experience
for those air pollutants, it is of interest to explore their utility for
facilitating CO2 source attribution (Brioude et al., 2012).

Goal of this work

Atmospheric CO2 has unique characteristics (e.g., long atmo-
spheric lifetime, large background concentration, and strong bidir-
ectional biospheric fluxes) that are distinctly different from other
traditionally modeled chemical pollutants. Therefore, it is impor-
tant to (1) characterize and understand the variability of CO2 on
fine spatial and temporal scales and (2) identify and quantify
various model uncertainties associated with CO2 fluxes, model
transport, and initial and boundary conditions.

This paper serves as a proof-of-concept for using CMAQ to
achieve these goals. Because we only present model results for a
single month, sweeping conclusions drawn from these results are
not possible, considering the significant seasonal variations of
CO2. Instead, since this is the first time using CMAQ to simulate
CO2, we focus on introducing the methodology, including input
data andmodel experiment design, and try to interpret our results
in the context of conventional understanding and findings from
previous studies. The modeling framework here will form the
foundation for more comprehensive investigations of CO2

spatiotemporal variability and modeling uncertainties in the
future, which will be achieved by analyzing model simulations
for a longer time span using more observational data.

The sections are organized as follows. In theMethods section,
we first explicitly describe the input data used, highlighting the
characteristics (e.g., magnitudes, spatial distributions, etc.) of
different types of CO2 fluxes. Then we describe the design of
model sensitivity experiments and the observational data to
which the modeling results are compared. In the Results and
Discussion section, we present modeling results from an initial
implementation over the contiguous U.S. domain in October
2007. We show the characteristics of spatial patterns of CO2

near the surface simulated by the model, and perform model
sensitivity experiments to understand the roles of meteorology,
biosphere–atmosphere exchange, and fossil-fuel emissions in
shaping the CO2 spatial distribution. A comparison of CO2

concentrations simulated by the model and observed at six tall-
tower sites in the National Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory
(ESRL) network follows, with a focus on one site that is influ-
enced by urban fossil-fuel emissions. Finally, the correlations
between model-simulated CO2 and traditionally regulated air
pollutants (i.e., CO, NOx, and SO2) are examined, and the
implications for inverse modeling are discussed.

Methods

CMAQ configuration and input data for CO2

simulation

For the present study, we used CMAQ Version 5.0 with
meteorological inputs from the Weather Research and Forecast
(WRF) model (Version 3.1.1). The CMAQmodel domain covers
the contiguous United States and surrounding regions and has
36-km spatial resolution and 22 vertical layers from the surface
to 50 hPa. The base configurations ofWRFand CMAQ are listed
in Table S1 in the supplemental information. CO2 is added into
CMAQ as an inert chemical species, whose concentrations are
determined by atmospheric transport (horizontal and vertical
advection and diffusion) and four types of fluxes, including (1)
bidirectional biosphere–atmosphere exchange, (2) bidirectional
ocean–atmosphere exchange, (3) fossil-fuel emissions, and (4)
fire emissions. The fossil-fuel and fire emissions fluxes are taken
from existing emissions inventories. The atmosphere–biosphere
and atmosphere–ocean bidirectional fluxes are from terrestrial
biosphere model outputs. These four types of fluxes are pre-
scribed in the model in the same manner as the emissions fluxes
for existing chemical species in CMAQ. In principle, the bio-
sphere–atmosphere and ocean–atmosphere bidirectional fluxes
can be simulated in an inline mode by two processes, that is,
emissions and dry deposition of CO2, as done for ammonia
(NH3) and mercury (Hg) in CMAQ (Pleim and Ran, 2011).
Currently, CO2 does not undergo dry deposition in CMAQ
since the negative flux of NEE is an equivalent process. Such
capability for modeling CO2 with CMAQ will be used in future
efforts. The following subsections describe the input data that
were used for CMAQ CO2 simulations in this work.
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Biosphere–atmosphere exchange. The bidirectional bio-
sphere–atmosphere exchange of CO2, net ecosystem exchange
(NEE), is the net flux between the biosphere and atmosphere due
to CO2 uptake during vegetation photosynthesis and CO2 release
during respiration. This exchange also includes CO2 releases due
to natural and anthropogenic disturbances, such as emissions
contributed by fire or conversions in land use (if any). Land-
use conversion and fire contributions are specific to the terres-
trial biosphere model (TBM) used here (e.g., see detailed com-
parison of structural differences among TBMs in Huntzinger
et al. 2013). NEE simulated by current TBMs is still highly
uncertain, which could be attributable to variations in inputs to
the models (e.g., climate forcing and model parameters) and
model structure (e.g., the model’s capability of capturing impor-
tant processes, such as CO2 fertilization, nitrogen limitation, and
disturbances). A major endeavor of carbon-cycle research has
involved intercomparison and evaluations of terrestrial-
biosphere models (e.g., Huntzinger et al., 2012, 2013; Schaefer
et al., 2012; Schwalm et al., 2010), and no model is obviously
superior to others in all aspects. Efforts using atmospheric CO2

observations to constrain NEE fluxes have increased in recent
years. NOAA’s CarbonTracker model (Peters et al., 2007) is an
example of a data-assimilation system that provides optimized
biosphere and ocean CO2 fluxes using in situ CO2 observations
from a global observational network.

We used three different sets of NEE fluxes as input to CMAQ,
including (1) NEE from the Carnegie–Ames Stanford Approach
(CASA), which are used by CarbonTracker-2011 (CT2011,
http://carbontracker.noaa.gov) as priors (1� � 1�, 3-hourly),
and hereafter denoted by CASA NEE); (2) CT2011 optimized
NEE (1� � 1�, 3-hourly, hereafter denoted by CT2011 NEE),
which represents an improved estimate over CASA NEE, as the
result of imposing observational constraints; and (3) NEE from
the Community Land Model (Version 4) with surface and sub-
surface runoff parameterizations from the Variable Infiltration
Capacity (VIC) model (CLM4VIC, the baseline global simula-
tion, i.e., BG1 simulation; Li et al., 2011) (0.5� � 0.5�, 3-hourly,
hereafter denoted by CLM4VIC NEE) following protocols for
the North American Carbon Program (NACP) Multi-Scale
Synthesis and Terrestrial Model Intercomparison (MsTMIP)
project (http://nacp.ornl.gov/MsTMIP.shtml; Huntzinger et al.,
2013; Wei et al., 2013). More details of the CLM4VIC BG1
simulation are provided in the supplemental information. NEE
from CT2011 and CASA do not include fire emissions.
CLM4VIC NEE includes fire emissions, but the contribution
to NEE in October 2007 is small.

Figure 1 shows the monthly mean NEE fluxes from CT2011,
CASA, and CLM4VIC over the model domain for October
2007. During this nongrowing (fall) season, the biosphere acts
as a net source of CO2 in terms of total fluxes over the model
domain and the contiguous United States, as consistently shown
by the three sets of NEE (Table 1). A transition from a net source
in the north to a net sink in the south can be seen in both CT2011
(Figure 1a) and CASA (Figure 1b). The spatial distribution of
CLM4VIC NEE is distinctly different. Figure 1c shows a dipole
structure in the central and southeastern United States, and the
total flux is only less than a half of the former two CASA-derived

NEE fluxes. We note that such intermodel discrepancies of NEE
observed here are not surprising, in comparison with previous
biosphere-model intercomparison studies (e.g., Huntzinger
et al., 2012; Schaefer et al., 2012). Differences between the
CLM4VIC and CASA models include, but are not limited to,
land cover and land-use history, meteorological input data, and
resolution of model biogeophysical and biogeochemical para-
meterizations and representations. For example, plant phenology
is constrained by satellite observed Normalized Difference
Vegetation Index (NDVI) in CASA, but is simulated prognos-
tically in CLM4VIC. All these differences could contribute to
the differences in spatial patterns and domain total fluxes. Fully
understanding the effects of such model discrepancies would
require a detailed comparison of the algorithms and input data
used in CASA and CLM4VIC, which is outside the scope of this
work. Instead, such intermodel differences of NEE from these
three representative data sets can be employed as a rough esti-
mate of uncertainties of NEE predicted by current TBMs. The
differences of model-simulated atmospheric CO2 concentra-
tions, as a result of using these three different NEE inputs, will
provide a rough estimate of the CO2 uncertainty caused by
uncertainty in NEE (Huntzinger et al., 2011; Messerschmidt
et al., 2012). We note that although only spatial distributions
are shown in Figure 1, uncertainty of temporal variability of NEE
as an important factor has also been taken into account by using
these three NEE inputs.

Fossil-fuel, fire, and ocean fluxes. Two fossil-fuel emissions
inventories are used in this work. In our standard model config-
uration (Table 2), for model grids within the United States, we
use the Vulcan fossil-fuel emissions inventory (Gurney et al.,
2009). The Vulcan inventory is a well-documented high-
resolution (10-km grid spacing, hourly temporal resolution),
process driven, and fuel-specific fossil-fuel CO2 emissions
inventory compiled for the United States. In the Vulcan inven-
tory, eight emissions sectors are taken into account, that is, air-
craft, cement, commercial, industrial, nonroad, on-road,
residential, and electricity production. Nonroad, nonpoint,
point, and airport emissions activity data are taken from the
U.S. Environmental Protection Agency (EPA) National
Emissions Inventory (NEI) (for the year of 2002), which is a
comprehensive inventory of all criteria air pollutants (CAPs) and
hazardous air pollutants (HAPs) across the United States. Data
from the EPA Emissions tracking system/continuous emissions
monitoring systems (ETS/CEMs) are used for electricity produc-
tion emissions. National Mobile Inventory Model (NMIM)
County Database (NCD) data are used for deriving on-road
CO2 emissions. AERO2K data are used for aircraft emissions
(Eyers et al., 2004). Data for Portland cement are used for
deriving CO2 emissions from cement production. More detailed
information about the Vulcan inventory can be found by refer-
ring to Gurney et al. (2009) and the website of the Vulcan project
(http://vulcan.project.asu.edu, accessed January 14, 2013).
Since the Vulcan inventory is compiled for the year of 2002
and there is a notable weekday/weekend effect in the data
(McKain et al., 2012), we shifted the days in Vulcan such that
the weekday/weekend patterns match the dates in 2007.
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For model grids outside the United States, where Vulcan does
not have values, we used an emissions inventory for 2007 from
the Carbon Dioxide Information Analysis Center (CDIAC), a
widely used global emissions inventory (1� � 1�, monthly) in
global CO2 modeling (Andres et al., 2011). The Vulcan inven-
tory is based on NEI-2002 and is used here to investigate the
advantages of using an inventory with high spatial and temporal
resolution. In principle, CO2 emissions can be processed
together with other pollutants using an emissions processor, for
example, the Sparse Matrix Operator Kernel Emissions
(SMOKE), based on the U.S. EPA NEI, in future CO2 regional
modeling studies.

Figure 2 shows the monthly mean fossil-fuel emissions from
Vulcan and CDIAC inventories in the model domain for October
2007. The differences between Vulcan and CDIAC reflect dif-
ferent spatial resolutions, spatial allocation methods, and refer-
ence years of the two inventories (2002 for Vulcan and 2007 for
CDIAC). The two inventories, although compiled for different
years, have similar (within 3%) total emissions in the contiguous
United States (Table 1), reflecting the small interannual varia-
bility of national CO2 emissions in the U.S. in the latest decade
(Boden et al., 2012). Another key difference between the two
inventories is that Vulcan takes into account temporal variations
while CDIAC does not. A comparison of Figure 1 and Figure 2

(c)

(b)

(a)

–12

–8

–4

0

4

8

12

NEE
[x10–7 moles m–2 sec–1]

Figure 1. Monthly mean NEE for October 2007 from (a) CT2011, (b) CASA (CT2011 prior), and (c) Community Land Model (CLM4VIC-BG1) in the model
domain.
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reveals that NEE shares characteristics with area sources, that is,
relatively little spatial variability and small gradients, whereas
fossil-fuel emissions are dominated by point sources and show
considerable spatial heterogeneity and large gradients. By com-
paring CO2 simulations using these two emissions inventories
against observations, we examined the benefit of using a high-
resolution emissions inventory like Vulcan.

For fire emissions, GFED (0.5� � 0.5�; monthly) inventory
(as used in CT2011) is used. Fire emissions are highly variable
in space and time, but are of minor importance compared to
fossil-fuel emissions and to biosphere–atmosphere exchange
for the simulation month (Table 1). However, they are likely to
be more important during active fire months and regions. Fire
emissions are turned off when CLM4VIC NEE is used, as it
already includes fire emissions. The effects of fire will be
examined in future by using different fire emissions algorithms
such as GFEDv3.1 (0.5� � 0.5�; 3-hourly; http://www.
globalfiredata.org/Data/index.html, accessed January 14,
2013) and SmartFire.

We used CT2011 optimized estimates for ocean fluxes (1� �
1�; 3-hourly), which are of minor importance compared to the
biospheric and fossil-fuel fluxes (Table 1).

CO2 net fluxes. It is instructive to examine the net CO2 fluxes as
a result of the sum of all four types of fluxes (i.e., fossil fuel,
bisospheric, fire, and ocean). The spatial pattern of the CO2 net
flux shown in Figure 3 retains features from NEE (regional pat-
tern) and fossil-fuel emissions (scattered hot spots) because of
their comparable flux magnitudes in this month (Figures 1 and 2).
A number of CO2 emissions hotspots shown inVulcan (Figure 2a)
are still clearly seen in Figure 3, such as the Los Angeles (LA)
Basin and San Francisco Bay Area along the West Coast, and the
Houston–Galveston–Brazoria area along the Gulf Coast. Many
smaller andweaker emission sources in Figure 2a, especially those
in the eastern United States., do not appear as clearly because of
comparable or larger NEE flux. Neutral (zero) and negative net
fluxes are seen in the southwestern United States and the Mexican
mainland, with all three sets of NEE, as a result of negative NEE

Table 1. CO2 fluxes used in CMAQ simulations

Type of fluxes Input data source Total fluxesa (Tg carbon month�1)

Biosphere fluxes (1) CT2011 optimized fluxes based on CASA (1� � 1�; 3-hourly) 163.37 (96.79)
(2) CASA (1� � 1�; 3-hourly) 125.46 (72.22)
(3) CLM4VIC (0.5� � 0.5�; 3-hourly) 60.58 (6.74)

Fossil fuel fluxes (1) VULCAN (2002; 10 km; hourly, United States only) 115.42 (115.42)
(2) CDIAC (2007; 1� � 1�; monthly) 132.42 (113.51)

Fire fluxes GFED (0.5� � 0.5�; monthly) 1.02 (0.79)
Ocean fluxes CT2011 optimized fluxes 2.84 (0.00)

Note: aShown here are total fluxes over the whole CMAQ domain and within the contiguous United States (in parentheses), respectively.

Table 2. List of model sensitivity experiments

Number Notationa Meaning Biosphere fluxes Fossil fuel fluxes

1 VCT Standard model configuration CT2011 Vulcan and CDIACa

2 DCT Replace Vulcan with CDIAC in the United States CT2011 CDIAC
3 VCS Replace CT2011 NEE with CASA CASA Vulcan and CDIACa

4 VCL Replace CT2011 with Community land Model (v. 4) CLM4VIC Vulcan and CDIACa

5 BG Background fossil fuel and biosphere sources outside
the United States, no biosphere or fossil-fuel fluxes
in the United States

CT2011(outside the U.S.) CDIACb

6 BIO Biosphere fluxes globally, no U.S. fossil-fuel
emissions.

CT2011 CDIACb

7 FF Fossil fuel emissions globally, no NEE
in the United States

CT2011(outside the U.S.) Vulcan and CDIACa

Notes: Key to model notation for simulations 1 to 4: A three-letter code is used, in which the first letter refers to the source of fossil fuel input in the United States (V for
Vulcan, D for CDIAC). The next two letters refer to the source of NEE input (CT for carbon tracker, CS for CASA, CL for Community Land Model). aVulcan
emissions are used for model grids within the United States, and CDIAC emissions are used for model grids outside the United States. bCDIAC emissions are used
for model grids outside the United States only.
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and small fossil-fuel emissions fluxes in these areas. When
CLM4VIC NEE is used, negative net fluxes are also observed
throughout the central United States and in many areas of the
intermountain West.

The differences in NEE models, as shown in Figure 1, lead to
different spatial patterns of net fluxes in Figures 3a, 3b, and 3c.
Much smaller differences between models are found along the
West Coast than in the eastern United States. Figure 3c shows a
large net CO2 sink in the central United States and a strong net
CO2 source in the southeastern United States with CLM4VIC
NEE, which are not seen with NEE from CASA or CT2011. In
turn, the fossil-fuel emissions signals in the southeastern United
States reflected in the net fluxes with CT2011 (Figure 3a) and
CASA (Figure 3b) NEE are not seen with CLM4VIC
(Figure 3c). As shown in later sections, such different net fluxes
due to the differences in these three NEE inputs indeed lead to
different spatial patterns of CO2 near the surface simulated by
CMAQ. The differences of net fluxes in Figure 3 can facilitate
understanding the interference by the uncertainty of NEE with
the interpretation of CO2 simulations and observations.

Initial and boundary conditions. Given the long atmospheric
lifetime of CO2, concentrations simulated by a regional model
like CMAQ are expected to be sensitive to model initial condi-
tions (IC) and boundary conditions (BC), as has been shown by
previous studies (Chevillard et al., 2002). Four-dimensional
concentration output from CT2011 using optimized NEE and
ocean fluxes at 3� � 2� and 3-hourly resolution were used as
lateral and top BC in CMAQ. To minimize the impact of IC
uncertainty, we spun up the model for 10 days. An experiment
replacing 3-hourly BC with constant BC profiles shows large
impact over the whole domain. The sensitivity of the simulation
to IC/BC can be assessed in future work using the DDM-3D
technique with CMAQ (Hakami et al., 2004).

Model experiments

We performed simultaneous simulations of CO2 and a full
suite of default chemical species in CMAQ for October 2007.

Two sets of model simulations were conducted. The first set was
designed for evaluating the roles of different sources/sinks of
CO2 in regulating the CO2 spatial distribution by decomposing
CO2 into three components, that is, the background, biosphere,
and fossil-fuel components. Specifically, we defined the region
of interest to be the contiguous United States. The background
component was defined as CO2 concentrations as a result of
transport, fire, and ocean fluxes over the whole domain, and
fossil-fuel emissions outside the United States. The biosphere (or
fossil-fuel) component was defined to be CO2 due to NEE (or
fossil-fuel emissions) within the United States domain in this
month. A second set of simulations was performed to assess the
impact of NEE uncertainty on simulated CO2 concentrations by
comparing model results using three different NEE inputs.

Configurations of the seven model runs for these experiments
are tabulated in Table 2. The key to model notation for simula-
tions 1 to 4 is as follows: A three-letter code is used, in which the
first letter refers to the source of fossil fuel input in the United
States (V for Vulcan, C for CDIAC). The next two letters refer to
the source of NEE input (CT for CT2011, CS for CASA, and CL
for Community Land Model [CLM]). These simulations consist
of (1) our standard model (VCT) using CT2011 optimized NEE
and GFED fire emissions over the entire domain, CDIAC fossil-
fuel emissions outside the United States, and Vulcan fossil-fuel
emissions within the United States; (2) a CDIAC run (DCT) that
differs from VCT by replacing Vulcan emissions with CDIAC
emissions within the United States; (3) a CASA run (VCS) that
differs from VCT by replacing CT2011 NEE with CASA NEE;
(4) a run (VCL) that differs from VCT by replacing CT2011
NEE with NEE from the Community Land Model (v. 4); (5) a
background run (BG) that differs from VCT by turning off NEE
and fossil-fuel fluxes within the United States; (6) a biosphere
run (BIO) that differs from VCT by turning off fossil-fuel emis-
sions within the United States; and (7) a fossil-fuel run (FF) that
differs from VCT by turning off NEE in the United States. The
biosphere component of the net flux of CO2 in the United States
was obtained by subtracting concentrations in BG from BIO, and
the fossil-fuel component was obtained by subtracting BG
from FF.

(a) (b)

0 2 4 6 8 10 12

Fossil Fuel CO2 Flux [10–7 moles m–2 sec–1]

Figure 2. Monthly mean fossil-fuel CO2 emissions for October 2007 from (a) Vulcan and (b) CDIAC in the model domain.
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Figure 3. Sensitivity of monthly mean net CO2 fluxes to choice of NEE, (a) CT2011 for VCT (“our standard model”), (b) CASA for VCS, and (c) Community Land
Model 4VIC-BG1 for VCL. Fossil-fuel emissions (Vulcan inside the United States and CDIAC outside), fire emissions (GFED), and ocean fluxes (CT2011) are the
same for the three model configurations.
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CO2 observations from NOAA ESRL tall towers

As a component of the NOAA ESRL global sampling net-
work, CO2 has been continuously measured at a network of six
tall-tower sites across the contiguous United States (Andrews
et al., 2009). These in situ near-surface CO2 data have been
extensively used for carbon-cycle research, and are assimilated
by CarbonTracker (Peters et al., 2007). The majority of the tall-
tower sites are located in remote areas with insignificant influ-
ences from local fossil-fuel emissions. However, such local
fossil-fuel emissions of CO2 are of interest to the emissions-
verification problem. CO2 data are available from all six tall-
tower sites in the model domain for October 2007. Information
(location, elevation, and sampling altitude) of these sites is given
in Table S2. Five of the six sites are far from fossil-fuel emissions
sources, and thus the observed CO2 variability at these sites is
mostly driven by long-range transport and more local biospheric
fluxes. The Boulder Atmospheric Observatory (BAO) (40.05� N,
105.00� W, 300 m above ground, 1584 m elevation) is a unique
site that frequently receives local emissions from Denver,
CO. For this reason, the data from BAO in this month were not
assimilated by CT2011 to avoid an artificial scaling factor
applied to a larger region due to the misrepresentation of local
emissions impact by the global model TM5. In this work, we
compared model-simulated CO2 with observations from the six
tall tower sites to evaluate general model performance. In parti-
cular, we elaborate on the comparison for BAO to understand the
underlying factors driving the observed variability of CO2 at a
site that is influenced by fossil-fuel emissions from a city.

Results and Discussions

Spatial distribution of CO2 near the surface over the
contiguous United States

From CarbonTracker to CMAQ. Figure 4 shows the monthly
mean spatial distributions of CO2 from CT2011 (Figure 4a) and
two CMAQ simulations, that is, DCT in Figure 4b and VCT in
Figure 4c. DCT and CT2011 show similar large-scale patterns in
general, but large differences are apparent between the two (as
large as 15–20 ppmv), particularly along the western coast of the
Mexican mainland. DCTuses CT2011 CO2 outputs as initial and
boundary conditions, and is driven by the same set of CO2 fluxes
as used by CT2011 (Table 2). Therefore, differences between the
results from DCT (Figure 4a) and CT2011 (Figure 4b) can be
attributed to the differences of model transport in CMAQ and
CT2011, in the following key aspects: (1) assimilated meteorolo-
gical fields (WRF for CMAQ/DCTversus EWF forecast for TM5/
CT2011), (2) model resolution (36 km � 36 km for DCT versus
1� � 1� or �85 km � �111 km for CT2011), and (3) transport
representations (CMAQ versus TM5). As expected, the higher
spatial resolution of DCT allows for resolving fine-scale features
that are not seen in CT2011. Furthermore, by replacing the
CDIAC inventory in DCTwith the Vulcan inventory, which has
much higher spatial and temporal resolution, VCT simulates
numerous hot spots and stronger spatial heterogeneity of CO2,
while retaining the synoptic-scale spatial pattern in DCT. Overall,
Figure 4 demonstrates that, compared to CT2011, the much-

refined descriptions of transport and emissions in CMAQ allow
for more detailed characterization of the spatial distribution of
CO2. A spatial map of CO2, as shown in Figure 4c, can facilitate
the interpretation of sparse observational data in a regional con-
text. In the next section, we discuss the roles of meteorology,
biosphere, and fossil-fuel emissions in shaping the spatial pattern
of CO2 simulated by CMAQ in the United States by examining the
contributions to CO2 from these components individually.

Decomposition of CO2 into background, biosphere, and fossil-
fuel components. Figure 5 shows the background, biosphere,
and fossil-fuel components of CO2 simulated by CMAQ, using
the model configurations shown in Table 2. As can be seen in
Figure 5a, a relatively uniform background CO2 of 380–383
ppmv over most places in the country in October 2007 is simu-
lated by the background run in the absence of biospheric and
fossil-fuel fluxes in the contiguous United States. However,
discernible gradients in CO2 are still seen in the northeastern
and western United States. In Figure 5b, the biosphere, as a net
source (positive NEE) of CO2 in this month, is responsible for
prevalent CO2 enhancement in the United States on top of the
background in Figure 5a. Weaker CO2 enhancement is seen in
the Southwest because of lower NEE fluxes, and depletion of
CO2 (up to more than 4 ppmv) occurs in central Texas and, to a
lesser degree, in the Los Angeles (LA) Basin. In comparison, the
fossil-fuel component in Figure 5c exhibits a similar spatial
pattern to the biosphere component with some marked differ-
ences. Numerous domes of CO2 (>16 ppmv) form near large
emissions sources (as shown in Figure 2a). Dispersion of CO2

from these domes and from smaller emissions sources result in
an increase of 2–4 ppmv of CO2 superimposed on the back-
ground. Comparing Figures 5b and 5c suggests that (1) in areas
far away from large fossil-fuel emissions sources, the biosphere
component is similar to or even higher than the fossil-fuel
component, and (2) the biosphere component in the majority of
cities cannot be regarded as negligible, with the possible excep-
tion of some urban areas, for example, the LA Basin in October
2007. The decomposition of CO2 into biosphere and fossil-fuel
components also facilitates the interpretation of CO2 distribution
shown in Figure 4c. For example, Figure 5b clearly shows that
NEE is the main contributor to the high CO2 in central
Pennsylvania. The biosphere CO2 component is expected to
vary significantly with season, however, and thus its contribution
to atmospheric CO2 is expected to change with season as well.

Sensitivity of CO2 spatial distribution to uncertainty in NEE. All
the results discussed thus far are from simulations using CT2011
NEE as input. In this subsection, we examine the impact of
uncertainty of NEE on the spatial patterns of CO2. Figure 6
compares monthly mean spatial distributions of CO2 near the
surface simulated by VCT, VCS, and VCL, which use the same
fossil-fuel emissions input but different NEE (Table 2). A com-
parison among Figures 6a, 6b, and 6c reveals considerable model
discrepancies as a result of differences in NEE inputs, consistent
with a recent inverse modeling study using synthetic data at a
few tower sites over the contiguous United States (Huntzinger
et al. 2011). The regional mean concentration of CO2 is lower in
VCL (Figure 6c) than in the other two models, consistent with its
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Figure 4. Monthly mean CO2 concentrations near the surface in October 2007 simulated by (a) CT2011, (b) DCT, and (c) VCT (“the standard run”).
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Figure 5.Monthly mean CO2 produced by (a) the background model (BG), (b) biospheric sources only in the United States (BIO-BG), and (c) fossil-fuel sources only
in the U.S. (FF-BG) over the contiguous United States in October 2007. Note the scale change from (a) to (b) and (c).
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Figure 6. Monthly mean CO2 concentrations near the surface simulated for October 2007 by (a) VCT (b) VCS, and (c) VCL.
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overall lower NEE (Table 1). CO2 domes in the southeastern
United States shown in VCT (Figure 6a) diminish in both VCS
and VCL (Figure 6b and Figure 6c). In contrast, CO2 concentra-
tions along the West Coast do not vary much with different NEE
inputs, implying smaller effects of uncertainty in NEE. Such
regionally varied situations imply that conclusions drawn from
studies at one locale (e.g., in the LA Basin) need to be reexa-
mined when looking at another locale (e.g., Washington, DC, or
Atlanta, GA). The uncertainty of NEE as reflected by intermodel
differences has been found to be seasonally dependent
(e.g., Huntzinger et al., 2011). Therefore, the conclusions
drawn here from one month of simulation cannot be seen as
representative for all seasons. More comprehensive model com-
parisons for all seasons using NEE outputs from a larger group of
TBMs are needed in the future to better understand the issue of
NEE uncertainty and biospheric interference.

Comparison with tall-tower measurements

In this section, we examine the model results against observa-
tions at the six NOAA ESRL tall-tower sites listed in Table S2 to
evaluate and understand CMAQ-simulated temporal variations
of CO2. Figures S1 through S6 show the CO2 time series and
mean diurnal profiles from CMAQ and CT2011 simulations,
compared to the associated observations at the six sites. CT2011
has perturbed NEE fluxes to match CO2 observations at five of
the six sites (except for BAO). In general, CMAQ models using
CASA/CT2011-derived NEE fluxes (DCT, VCT, and VCS)
show better performance than the model using the Community
land Model 4VIC NEE (VCL). Compared to CT2011, the model
using CASA-derived NEE (VCS) can simulate better monthly
mean concentrations (as suggested by the reduced mean biases)
and resolve more high-frequency variability (as suggested by the
closer-to-unity ratios of standard deviations) at most of the sites.
However, these CMAQ models do not always show higher
correlations with observations or lower root-mean-square error
(RMSE) than CT2011, suggesting that switching to new trans-
port and fluxes at higher resolution also introduces more model-
data mismatches. The mean diurnal profiles in Figures S1–S6
show that almost all the CMAQ models show a low bias com-
pared to observations at night through early morning. Possible
reasons include, but are not restricted to, errors in model trans-
port in the boundary layer and emissions temporal profiles.

As mentioned earlier, BAO is unique and of higher interest
compared to the other five sites because (1) it receives fresh
fossil-fuel emissions from Denver, CO, and (2) the observations
were not assimilated by CT2011 in this month. Figure S1 show
that all the CMAQ models have improved performance
over CT2011 in reproducing the 3-hourly observed CO2 con-
centrations at BAO. CT2011-simulated CO2 roughly tracks the
observed background (lowest observed level) and shows negli-
gible diurnal variability, possibly because of the smoothed local
topography with the coarse grid of TM5 (the global model used
for CT2011) and diluted emissions in CDIAC near
BAO. Figure 7 shows that CMAQ-simulated diurnal profiles
are in general stronger than CT2011, but also vary with different
NEE and/or fossil-fuel emissions. The standard model (VCT)
with CT2011-optimized NEE and Vulcan fossil-fuel emissions

shows the best agreement with observation in terms of both 3-
hourly and mean diurnal variability, but also has a low bias in
early morning, as found for all other CMAQ models at all sites.
DCT, which uses the same fluxes as CT2011 but higher resolu-
tion meteorology, simulates a slightly stronger diurnal variability
than CT2011. Using the hourly varying Vulcan emissions (VCT,
VCS, andVCL), which resolve the morning rush-hour emissions
peak, helps to capture the observed morning peak around 8:00
a.m. By switching to different NEE inputs, VCS and VCL
simulate lower CO2 concentrations in general than VCT. These
results suggest that both time-varying emissions and biospheric
fluxes are important drivers of the 3-hourly and diurnal varia-
bility of CO2 at BAO. The importance of time-varying emissions
was recently demonstrated by a recent modeling study, which
shows that diurnal and weekly variations of emissions could
result in up to 8 ppmv of perturbations of CO2 near the surface
(Nassar et al., 2013).

It is very important to understand the causes for the model–
data mismatch to guide subsequent inverse modeling. Since
inverse modeling essentially seeks to match observations by
perturbing selected model fluxes, an incorrect attribution of the
model–data mismatch would directly lead to erroneous inversion
results (e.g., Ahmadov et al., 2007). For instance, attributing the
early-morning low bias to errors in fossil-fuel emissions, or
NEE, or model transport would lead to drastically different
conclusions (i.e., scaling up emissions in the first vs. no scaling
in the latter two). Indeed, our model results illustrate that emis-
sions verification is confounded by factors that affect CO2 con-
centrations simultaneously with emissions, such as transport and
biospheric fluxes. Alternatively, fossil-fuel emissions could be
isolated using certain tracer or proxy techniques.

Spatial correlations between CO2 and traditionally
regulated pollutants

Another question that can be conveniently addressedwith CMAQ
is the feasibility of using traditionally regulated air pollutants, such as
CO, NOx, and SO2, to provide constraints for fossil-fuel CO2

(e.g., Brioude et al., 2012). For these traditionally regulated air
pollutants, there are abundant long-term ground-based and satellite
monitoring data that contain valuable information of historical trends
and spatial patterns of emissions. Effective and economical strategies
for emissions verification are urgently needed to ensure the success
of near-term emissions reductions (McKain et al., 2012; NRC,
2010). It is thus worthwhile to consider approaches that (1) take
full advantage of currently available observational networks and
experiences in air pollutant emissions monitoring and reduction,
and (2) combine state-of-the-art atmospheric transport and emissions
modeling techniques. It has been shown recently that concurrent
measurements of CO2, CO, NOy, and SO2 can be used to derive a
“top-down” estimate of CO2 emissions from a city (e.g., Brioude
et al., 2012). The emissions trend of CO2 over China was recently
inferred from satellite NO2 columns (Berezin et al., 2013). CO:CO2

correlation slopes from aircraft observations during TRACE-P were
used for understanding model–data mismatches and constraining
emissions fluxes (Suntharalingam et al., 2004).

Figure 8 compares the CMAQ-simulated monthly mean spa-
tial patterns of CO2, SO2, NOx, and CO. Fossil-fuel combustion
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is the largest source for all four compounds, although emissions
factors for their common source sectors are different, and each of
them has its unique sources and sinks. In terms of spatial dis-
tributions, CO2 correlates better with NOx (R¼ 0.63) and CO (R
¼ 0.61) than with SO2 (R ¼ 0.38). These correlations of con-
centrations are slightly better than the correlations of emissions
of these compounds (R ¼ 0.43 for CO2:NOx, R ¼ 0.4 for CO2:
CO, and R ¼ 0.24 for CO2:SO2), reflecting that, in addition to
similar emissions sources, transport processes also contribute to
the similar spatial patterns observed in Figure 8. Using emissions
of CO2 and tracer species for different years and regridding the
Vulcan inventory to the model resolution might have degraded

the correlations between CO2 and the three pollutants. A con-
sistent processing procedure for emissions of CO2 and its tracers
is necessary for future studies. CO2 hot spots (e.g., the CO2 hot
spot in central Pennsylvania and the broad high-CO2 region in
the central and northern United States) arising primarily from
biospheric fluxes can be readily identified with the assistance of
the three tracers that are mainly emitted in urban areas (with the
possible exception of electricity generating units, which can be
located in rural areas). A quantitative understanding of such
correlations and their utility to CO2 emissions inference needs
to be attained by taking into account (1) emissions factors and
activities for each individual source (e.g., Palmer et al., 2006;
Berezin et al., 2012) and (2) model-simulated transport (Wang
and Zeng, 2004) and model errors (Wang et al., 2009). The tracer
correlation problem has been studied extensively in the strato-
sphere (e.g., Michelsen et al., 1998; Plumb et al., 2007).
Modeling and observations need to be combined to better under-
stand the characteristics of tracer correlations in the troposphere.
Correlations on different dimensions, for example, a one-
dimensional (1-D) temporal correlation from a single ground
site (e.g., Vogel et al., 2010), a two-dimensional (2-D) spatial
correlation shown in Figure 8, or a four-dimensional (4-D)
spatiotemporal correlation from aircraft measurements
(e.g., Brioude et al., 2012; Palmer et al., 2006), convey different
physical meanings and should be examined and used carefully.
Incorporating CO2 into a positive matrix factorization (PMF)
analysis with multiple tracers (possibly including both gaseous
species and PM2.5 components) could also be considered to aid
the tracking of CO2 from different sources. Another possible
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Figure 7. Monthly mean diurnal profiles of CO2 in October 2007 observed at
Boulder Atmospheric Observatory (BAO) (TOWER) and simulated by CT2011
and CMAQ with different configurations, DCT, VCT, VCS, and VCL.
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Figure 8.Monthly mean concentrations of (a) CO2, (b) NOx, (c) CO, and (d) SO2 near the surface simulated by CMAQ for October 2007. CO2 is simulated by VCT
(our standard model).
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direction is to explore a joint CO2:tracer flux inversion (Wang
et al., 2009) that makes use of the correlation of model errors
between CO2 and a tracer.

Summary

In this work, we have described the motivation and methods
for simulating CO2 with CMAQ and have presented initial
modeling results for the contiguous United States in October
2007 to examine the potential of using CMAQ to characterize
CO2 spatial and temporal variability.
- By decomposing CMAQ-simulated CO2 into background,
biosphere, and fossil-fuel components, we have found that
biospheric fluxes and fossil-fuel emissions are comparably
important in shaping spatial distributions of CO2 near the
surface over the contiguous United States during October
2007, with each component showing its unique characteristics.

- By using three different sets of NEE as inputs, we have shown
that the uncertainty of NEE estimates has considerable impact
on model-simulated atmospheric CO2 concentrations near the
surface, a finding that is consistent with previous studies
(e.g., Huntzinger et al., 2011). While only three sets of NEE
inputs from two different TBMs are used here, in future work
additional TBM outputs from model intercomparison projects
(e.g., the ongoing MsTMIP project) will be used to compre-
hensively address the issue of NEE uncertainty.

- By comparing the model results with observations from six
tall-tower sites in the NOAA ESRL network, we have evalu-
ated the model-simulated 3-hourly and diurnal temporal varia-
bility of CO2. In particular, at BAO near Denver, CO, the
model using the Vulcan emissions and CT2011 NEE shows
the best performance in matching the observed mean diurnal
profile, although with a low bias in the early morning. Using
different NEE inputs degrades the model–data agreement.
More work is needed to better understand the model–data
mismatch and inform subsequent inverse modeling.

- The model-simulated spatial pattern of CO2 near the surface
shows varying degrees of correlations with NOx, CO, and SO2

as a result of their similar emission sources and common
transport processes. Future work will explore the utility of
these tracers for constraining fossil-fuel CO2 emissions.
Findings from this work serve as a proof of concept and

suggest that a regional CTM like CMAQ has the potential to
facilitate interpretation of CO2 observations and emissions ver-
ification. Future work will improve CMAQ CO2 simulations in
the following aspects: (1) increasing the model spatial resolution
to better resolve urban and point sources, (2) processing gridded
CO2 emissions using SMOKE, (3) developing inline simulation
of bidirectional biospheric fluxes, and (4) comprehensively eval-
uating the model performance using observations from ground
networks, aircrafts, and satellites for all seasons of a year. Other
greenhouse gases can also be studied using CMAQ in a manner
similar to that shown here.
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