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Restoration is currently underway in the industrial salt flats of San Francisco Bay,
California. Remote sensing of suspended sediment concentration and other
geographical information system predictor variables were used to model sediment
deposition within recently restored ponds. Suspended sediment concentrations were
calibrated to reflectance values from Landsat TM 5 and ASTER satellite image data
using three statistical techniques – linear regression, multivariate regression and arti-
ficial neural network (ANN) regression. Multivariate and ANN regressions using
ASTER proved to be the most accurate methods, yielding r2 values of 0.88 and
0.87, respectively. Predictor variables such as sediment grain size and tidal frequency
were used in the marsh sedimentation (MARSED) model for predicting deposition
rates. MARSED results show a root-mean-square deviation of 66.8mm (<1σ)
between modelled and field observations. This model was applied to a pond brea-
ched in November 2010 and indicated that the pond will reach sediment equilibrium
levels after 60months of tidal inundation.

Keywords: suspended sediment concentration; remote sensing; MARSED; wetlands;
GIS

Introduction

The San Francisco Bay Estuary, with a total area of approximately 4143.9 km2, is the
largest estuary in the USA. Development of the San Francisco Bay Estuary during the
last 200 years has transformed nearly 90% of historical wetland habitats into agricultural
fields and industrial salt production ponds (Philip Williams & Associates Ltd. & Faber
2004). The South Bay Salt Pond Restoration Project (SBSPRP), the largest and most
complex wetland restoration effort on the West Coast of the USA, will convert approxi-
mately 6070 hectares of salt production ponds to restored wetland habitats (Takekawa
et al. 2005). Understanding long-term sediment dynamics within the South Bay is
critical for proper accumulation estimates and subsequent restoration management
strategies in newly breached salt ponds (Foxgrover et al. 2007; Trulio et al. 2007).
Sediment accumulation rates of breached salt ponds are directly influenced by
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suspended sediment concentrations (SSCs), water flow paths, and tidally-driven sedi-
ment re-suspension (Philip Williams & Associates Ltd. & Faber 2004). Marshland rise
within the breached salt ponds allows plant colonization and establishment of a healthy
wetland ecosystem (Philip Williams & Associates Ltd. 2005). Currently, the SBSPRP
requires continued monitoring of newly breached salt ponds for three main reasons: to
understand sediment dynamics, to estimate the time required for establishment of vege-
tation in newly-breach ponds, and to identify potential changes in adaptive management
strategies for restoration.

Satellite image processing has previously been used to calibrate image-based reflec-
tance values to in situ measurements of SSCs in the visible and near-infrared spectral
range (Munday & Alföldi 1979; Chen et al. 1992; Baban 1995; Miller & McKee 2004;
Chen et al. 2006; Brodie et al. 2010; Xuejie & Damen 2010). Previous studies report
strong correlations between reflectance values and in situ turbidity (another measure of
suspended sediment) using a linear analysis in the 600–700 nm range (r2 = 0.72) (Miller
& McKee 2004; Chen et al. 2006), while other studies report strong correlations in the
600–900 nm range (r2 = 0.79) using a linear and multivariate analysis (Pavelsky &
Smith 2009).

Once SSCs are accurately mapped for the study area, deposition rates and cumula-
tive totals can be calculated. Sediment deposition is a function of the SSC, settling
velocity, bulk density, and water velocity (Temmerman et al. 2004). Temmerman et al.
(2003) modified an algorithm developed by Krone (1987) to predict sediment
deposition using these known variables and was able to predict sediment deposition in
growing marsh ecosystems at point locations of known SSC. This current study used
point locations of SSC to calibrate satellite imagery, providing a spatially comprehen-
sive distribution of SSCs within Ponds A21–A6. Accurately mapping SSCs from
remotely sensed images provided a method for determining sediment concentrations
without disturbing ecologically sensitive areas.

Field methods are also necessary for accurate calibration of satellite imagery. Vari-
ous studies have developed methods for monitoring in situ sediment accumulation rates,
with a wide-range of techniques and accuracy. Installed monitoring devices, such as
sediment traps (Gardner et al. 1980; Bale 1998), graduated pins (Reed 1989; Cahoon &
Lynch 1997; Callaway et al. 2009), anchored tiles (Reed 1989; Pasternack & Brush
1998) and sediment erosion tables (Boumans & Day 1993; Childers et al. 1993; Cahoon
et al. 2002), are inexpensive and effective methods for estimating accumulation rates,
but provide limited sampling points. SSC estimates are often used to indirectly measure
sediment accumulation rates, and they can be obtained through in situ measurements
and remote sensing techniques (Stumpf & Pennock 1989; Froidefond et al. 1993; Ruhl
et al. 2001; Li et al. 2003; Miller & McKee 2004).

Modelling techniques can be used to calculate future and current sediment accumula-
tion rates, and some models account for factors including wetland age, surface elevation,
and sea level fluctuations (Allen 1990; French & Spencer 1993; French et al. 1995;
Allen 1997; Temmerman et al. 2003; Temmerman et al. 2004). A zero-dimensional time-
stepping marsh sediment deposition model (MARSED) has been used to predict wetland
development based on particle settling velocity, time dependent SSCs, and sediment bulk
density (Krone 1987; Temmerman et al. 2003; Temmerman et al. 2004).

In this study, combined in situ and remote sensing applications were used to
monitor sediment accumulation in newly breached salt production ponds in the South
San Francisco Bay. Remote sensing methods used optical imagery from the Landsat-5
Thematic Mapper (TM) satellite and the Advanced Spaceborne Thermal Emission and
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Reflection Radiometer (ASTER) satellite to monitor SSCs within this region. Addition-
ally, in situ SSC samples were collected during satellite overpasses to generate an
applied relation between spectral observations and ground-truth data. This study
represents the first attempt to use these methods within the adaptive management
strategy of restoration for the SBSPRP. Continued monitoring of estuarine sediment
accumulation will provide temporal and spatial development predictions for each phase
of the restoration process.

Materials and methods

Study site

Tidal marshes are among the most highly productive ecosystems on the planet (Kelly &
Tuxen 2009). The South Bay salt ponds, located at the southern end of San Francisco
Bay (Figure 1), lie on the Pacific flyway, providing roosting and over-wintering sites
for migratory bird species, and habitat for waterfowl, shorebirds, and mammals (Siegel
& Bachand 2002). This highly productive area is created through the conveyance of the
Sacramento and San Joaquin rivers into the Pacific Ocean (Looker 2011). Flows in this
area are highly seasonal, with runoff mostly occurring in the rainy winter season (Loo-
ker 2011). Groundwater is also an important component of the hydrological system in
this region, and provides a source of freshwater replenishment; however, urbanization
of the area has led to degradation of water quality in this region. In the South Bay,
freshwater enters through the Coyote Creek Tributary and delivers sediment to the Alvi-
so Ponds. Additionally, the San Francisco Bay is located in a region with a Mediterra-
nean climate, with warm summers and mild winters. Approximately 85% of the annual
precipitation occurs from November to April (Looker 2011). In March of 2006, the US
Fish and Wildlife Service Don Edwards National Wildlife Refuge and the Santa Clara
Valley Water District initiated tidal pond inundation in Pond A21 (Callaway et al.
2009). The levees of the Pond A21 (Figure 1) were breached, allowing daily tidal flow
for the first time in over 100 years with the goal of providing natural sedimentation pro-
cesses to restore the tidal marsh habitat for successful vegetation reestablishment (Call-
away et al. 2009).

Figure 1. Study location in the Alviso Complex in the San Francisco Bay, California. Ponds
A21 and A6 are shown in yellow. Note also the location of Coyote Creek and NASA Ames
Research Center.
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Experimental design

Sediment deposition was modelled for Pond A21 for the three years after the levees
were breached in March, 2006 (Figure 1) (Newcomer et al. 2011). The model was
further applied to Pond A6 (discussed below) following the methods outlined by New-
comer et al. (2011). Pond A6 was breached in November 2010 and a high tide satellite
image was obtained on 5 January 2011 from the Landsat TM 5 satellite. Landsat TM 5
has a pixel size of approximately 30m� 30m and acquires data over the same location
approximately every two weeks at approximately 10 am (WIST 2010). Additional
image acquisition dates and bands used are discussed below.

Satellite remote sensing

Landsat TM 5 and ASTER were used in this study specifically to map suspended sedi-
ment in the South San Francisco Bay (USGS 2010a; WIST 2010). Both ASTER and
Landsat TM 5 were chosen for this study because of the availability of cloud-free
images, the breadth of bands available and the range of resolution provided by the two.
All satellite images were radiometrically corrected to reflectance and re-projected to the
UTM WGS 84 North projection to ensure tonal and spatial comparability between each
scene. To create SSC maps, Landsat TM 5 and ASTER images were first imported into
a geographical information system (GIS) environment (ArcGIS). Reflectance values
from Band 1, 2 and 3 of ASTER (520–600, 603–690 and 780–860 nm, respectively)
were calibrated with SSC values using two scenes (Table 1). Reflectance values from
Band 1, 2, 3, and 4 of Landsat TM 5 (450–520, 520–600, 630–690 and 760–900 nm
respectively) were calibrated with SSC values using two scenes, and the other three
scenes were used for prediction (Table 1).

To calibrate the remotely sensed images to SSC values, three statistical techniques
were used. Linear, multivariate, and artificial neural network (ANN) regressions were
compiled for both sensors to determine the best statistical technique for correlation with
SSCs and to allow a robust analysis of the thresholds of SSC for maximum and mini-
mum sediment deposition prediction. Landsat TM 5 and ASTER images were calibrated
using data from the historical USGS Water Quality of San Francisco Bay monitoring
program (USGS 2007, 2010b) and from field samples. The scenes selected in Table 1
were based on the availability of an overpass that corresponded with a cloud-free day
and correlated with the day of the historical USGS samples and the field samples. Val-
ues were determined at both the original resolution and at an averaged resolution (a
3� 3 grid) to reduce signal noise. Additional inputs of seasonal variations in SSCs, dis-
tance from the levee breach, bulk density, settling velocity, initial marsh height, time of
inundation, tidal frequency, and a high-volume array of SSC data points (obtained from
the satellite-produced images) were used in the MARSED model.

Table 1. Satellite sensors used to detect SSCs and corresponding dates.

Sensor
Bands
used

Wavelengths
(nm)

Resolution
(m) Dates used Image source

ASTER on
Terra

1,2,3 520–860 15 10/8/04, 10/29/09 Glovis (USGS
2010a)

Landsat 5
TM

1,2,3,4 405–900 30 8/18/94, 8/22/07, 8/27/09,
7/5/10, 1/5/11

Glovis
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After calibrating the satellite imagery using the regression equations, the SSC maps
were input into the MARSED model to predict deposition in Pond A21 for three years
post-breach. Modelled marsh accumulation values were then compared to previously
documented point measurements of sediment accumulation heights in the breached
Pond A21 (Callaway et al. 2009) to assess model accuracy. Pond A21 was used in the
model due to the previously acquired point measurements provided in Callaway et al.
(2009), which provided a baseline for comparison with the modelled estimates. Once
the modelled values for Pond A21 were within reasonable tolerance (± 10%) to previ-
ously documented point measurements, the model was used to predict deposition for
Pond A6, which was breached in November 2010.

Field methods

Surface water samples for suspended sediment analysis were collected at 24 random
locations in the South Bay over the course of two field days that corresponded with
Landsat TM 5 and ASTER overpasses. Since the sampling locations required boat
access, they were chosen in locations of the deep water channel where the boat would
not affect SSC values. SSC samples were obtained by placing a 1L closed container
into the water and opening the container at arm’s length to fill with water just below
the surface. Samples were processed at the USGS Western Coastal and Marine Geology
Laboratory (WCMGL) to determine SSC values. In addition, sediment samples were
collected from Pond A21 to characterize the physical properties (density, type, and size)
of sediment in the South Bay. These samples were taken at five representative locations
along the perimeter and seven locations on the interior of the pond. Samples were
obtained on the marsh surface by using an extendable instrument (extended 15 feet)
with a scoop to allow for a sediment grab sample in areas that we could not reach by
foot. Each sample was processed at the WCMGL for grain size distribution, settling
velocity, and organic content (Table 2). A value for bulk density was generated from a
reference density data-set of clay and mud densities (SI Metric 2010). These character-
istics, along with SSCs, are inputs to the MARSED model (Temmerman et al. 2003;
Temmerman et al. 2004).

Table 2. Variables used in the MARSED model, the field collection method for each variable
and the corresponding laboratory processing techniques.

Variable Field collection method Laboratory processing technique

Suspended sediment
concentration
(mg/L)

Water samples from South
Bay

Filtration

Grain size distribution Sediment samples from Pond
A21

Coulter LS100Q using laser diffraction

Settling velocity (cm/s) Sediment samples from Pond
A21

Modified Gibbs equation (Gibbs et al.
1971)

Organic carbon content
(% organic carbon)

Sediment samples from Pond
A21

CO2 coulometer and combustion
chamber
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USGS continuous monitoring stations and monthly cruises

In addition to the field collected SSC samples, historical SSC data-sets were obtained
from the USGS’s Water Quality and Continuous Monitoring Stations of San Francisco
Bay database for sampling stations 30–36, south of the San Mateo Bridge (USGS 2007,
2010b). These additional data-sets provided us with a more comprehensive set of SSC
values with which to correlate with the satellite images from 1994, 2007 and 2009.
Outliers due to sensor interference from biological fouling, especially during summer
months, were excluded (Buchanan & Lionberger 2007). Additionally, these data-sets
were used to calculate seasonal trends of sediment influx to the South Bay. Seasonal
mean averages were computed and compared to the 10-year average of 35.20mg/L.
The ratio between seasonal average SSCs and the 10-year average was calculated to be
1.08 for winter, 1.16 for spring, 0.95 for summer and 0.81 for fall. Most of the seasonal
variation in SSCs can be explained by high rainfall in the winter and spring (NCDC
2010). Resuspension of sediments can also contribute to higher concentrations in the
spring and summer months, due to stronger winds in the South Bay (Buchanan & Lion-
berger 2007). These coefficients were applied to seasonally adjust predicted SSCs in the
MARSED model.

Marsh sediment deposition model (MARSED)

One goal of this study was to model sediment deposition in Pond A21 (Figure 1) and
compare modelled results with the field data-set for sediment deposition collected by
Callaway et al. (2009). To effectively model sediment accumulation over several tidal
cycles and years, the MARSED model developed by Krone (1987) and modified by
Temmerman et al. (2004) was implemented using ArcGIS to predict sediment accumu-
lation for Pond A21, and then an accuracy assessment was run to verify simulated
results from Equation (1).

dE

dt
¼ dSðgrainÞ

dt
þ dSðorganicÞ

dt
� dP

dt
ð1Þ

where
dE/dt = rate of marsh height rise (m/year).
dS(grain)/dt = rate of mineral sediment deposition (m/year).
dS(organic)/dt = rate of organic content deposition (m/year).
dP/dt = resuspension/compaction (m/year).

Equation (1) was solved for dE/dt by summing the rates of deposition for mineral
sediment and organic content and subtracting resuspension and compaction. Organic
content was obtained from laboratory analysis and solving for the addition of sediment
grains, dS(grain)/dt, required further calculation in Equation (2). Equation (2) provides
the total grain deposition by calculating deposition for each tidal cycle and subsequently
for each years. Equation (2) produced a final estimate of marsh evolution during the
three years post-breach as a function of sediment concentration, settling velocity, and
bulk density of the sediment grains (Krone 1987).

dSðgrainÞ
dt

¼
Z
Year

Z
Tide

ws � CðtÞ � dt

q
ð2Þ
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where
dS(grain)/dt = rate of mineral sediment deposition (m/year).
ws= particle settling velocity (m/s).
C(t) = time dependent sediment concentration from Equation (3) (kg/m3), obtained

using remote sensing.
ρ = dry bulk density of deposited sediment (kg/m3).

To obtain the C(t) term in Equation (2), the initial concentration value C(0) was
taken from the remotely sensed image, and then Equation (3) was solved for dC/dt with
initial condition t = 0. Euler’s method was used to compute C(t) iteratively until it
reached its final steady-state value. To initially model the changing sediment concentra-
tion with the incoming tide, Equation (3) was solved at time steps of t= 0.001s in
Matlab (Krone 1987; Temmerman et al. 2003).

½hðtÞ � E�dC
dt

¼ �wsCðtÞ þ ½Cð0Þ � CðtÞ�dh
dt

ð3Þ

where
h(t) = time dependent water surface elevation (m).
E = elevation of the marsh surface (m).
dC/dt = rate of sediment concentration change (kg/s).
ws= particle settling velocity (m/s).
C(t) = time dependant sediment concentration (kg/m3).
C(0) = initial sediment concentration (kg/m3).
dh/dt = velocity of incoming flood tide (m/s).

For the purposes of this study, the Euler’s method yielded a sufficient approximation
to the final SSC value. The numerical approximation for solving Equation (3) at time
steps of t= 0.001 s and 60,000 + iterations ensured a steady-state solution was reached.
Euler’s method was appropriate for solving Equation (3) because the Euler global error
is proportional to the precision of the time step – approximately ±0.001mg/L in this
case (Zill & Cullen 2009). This error is insignificant to the overall SSC values because
the accuracy of the laboratory-derived SSC is ±0.01mg/L.

Marsh sedimentation is influenced by many variables including the time the pond is
inundated, organic matter content, seasonal influences of sediment concentration, tidal
velocity, water depth, sediment grain size and density, existing height of marshes, particle
settling velocity, and distance from the levee breech. SSC was the most influential vari-
able in this study and was calculated using an algorithm applied to the remote sensing
images. For each pixel, a correlating SSC value was used as the initial condition (C(0))
and applied to Equation (3) to determine the final rate of concentration change (dC/dt).
Once the rate of concentration change was obtained, the concentration at any specific time
thereafter could be solved. The MARSED model was applied to Pond A6 in the Alviso
complex, which was breached in November of 2010 (Figure 1). A 5 January 2011 Land-
sat TM 5 image was used to map SSCs because of an overpass on a day of high tide.

Statistical analysis

Three different statistical techniques were used to establish correlations between a range
of SSC values (0–100mg/L) and satellite reflectance values (Teodoro et al. 2008) – linear
regression, multivariate regression and ANN regression. For linear regressions, the band
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that produced the best statistical correlation for each sensor was determined and then
used in subsequent calculations. For multivariate regressions and ANNs, all available vis-
ible and near-infrared bands were used. The ANN was implemented using an adaptive
linear combiner (Wilde 2009). The ANN estimates the SSC by multiplying each band by
a weight. After each iteration, the residual is calculated and the weights are adjusted until
the error is minimized. Essentially, the ANN takes the data and learns from it until it pro-
duces the lowest possible error. Field SSC measurements as well as data from the
USGS’s Water Quality of the San Francisco Bay Project were correlated with reflectance
values from multiple satellite images using all of these statistical techniques (USGS
2010b). The final values contained in the SSC maps were then used in the MARSED
model to predict sediment deposition.

Sensitivity analysis

A sensitivity analysis of the MARSED model to different input variables was run to
assess how some of the most important predictor variables change the trajectory of
marsh equilibrium accumulation. The variables of tidal velocity, length of each time
step and the time-length of slack during one tidal cycle were considered. These three
variables influence the total amount of accumulation for each tidal cycle. The modelled
data-set was compared to the field data-set and the sensitivity of the model to these
three different variables was examined.

The velocity of the incoming tide is important to the model because of drag induced
erosion. The grain size analysis indicated a large proportion of clay particles in the sedi-
ment which are susceptible to scour at low velocities; thus, three different model runs
using different tidal velocities were considered to better understand outcomes on this
variable. Additionally, tidal velocities change on a daily basis depending on the season
and current meteorological conditions. Because we do not have access to velocity data
on a daily time schedule, we used an average value for the time period of the study.

The length of each time step in the model can also change the SSC prediction value
used to calculate deposition. To test the SSC sensitivity to the time step, and thus the
final model convergence, Equation (3) was solved for each time step to retrieve the
change in the SSC with time. Time steps of 0.01, 1, 2.5, and 5 s were chosen to test
model sensitivity. Lastly, the time-length of slack during one tidal cycle was
considered.

The period of slack is very important to marsh accumulation: without a significant
amount of time for sediment to deposit, acceptable rates of marsh accumulation will not
occur. Three different slack times – 0.5, 1, and 1.5 h – were chosen to test the model
sensitivity and the calculation of deposition rates.

Results

Field and laboratory results

Average values from the field samples that were used in the MARSED model are shown
in Table 3. These field values were obtained in an initial reconnaissance study by New-
comer et al. 2011. Average surface SSCs for Pond A21 were 46.16mg/L. This is consis-
tent with the values provided by the multivariate regression for Pond A21 using the
satellite images. The sediment is dominated by clay sized particles – 92% of particle
diameters fall below 16 μm (Krumbein & Sloss 1963). Organic content is also quite low
in this field environment.
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Suspended sediment prediction results

The accuracy of detecting SSCs through the use of remote sensing is dependent on many
factors including the resolution of the satellite image, the ability to acquire and process
the image with corresponding in situ SSC values and hydrodynamic influences. The two
remote sensing instruments used in this study (ASTER and Landsat TM 5) show varying
accuracies in correlating reflectance values with SSCs (Table 4). Reflectance values in
clear water are generally zero, and predictably increase with increasing SSCs (mg/L)
(Figure 2). Similar results are also shown by Li et al. (2003). Regressions effectively cor-
related pixel values with SSCs in each of the sensors, and were subsequently applied to
each satellite image in ArcGIS to create temporal maps of SSC data, effectively gaining
the variable C(0) for use in Equation (3), then converted to a deposition rate in mm/year
using Equation (2). The most effective linear regression for SSC correlations from
ASTER and Landsat TM 5 used band 3, which is consistent with previous studies using
visible spectrum imagery (630–690 nm) (Table 3). Multivariate and ANN regressions
using ASTER imagery proved to be the most accurate correlation methods, yielding r2

values of 0.88 and 0.87, respectively (Table 3). ASTER produced the most accurate
results in correlating SSCs, which was expected due to its high (15 m) resolution.

MARSED GIS model results

Root-mean-square deviation (RMSD) was used to measure the difference between
marsh accumulation values computed by the model and field values collected by
Callaway et al. (2009) (Table 4). Linear regression with band 3 of ASTER provided the
most accurate results, yielding a RMSD of 66.84mm (Table 4). This is less than
3 inches of deviation, providing reasonable error and accuracy for predicting marsh
sedimentation at local ponds in the South Bay.

Table 4. Regressions are shown from the linear, multivariate and ANN statistical techniques for
predicting SSCs. RMSD (mm) calculated between modelled and field results is also shown from
comparisons with the field results. Note that the most accurate predicted data-set was derived
from ASTER linear regression with an RMSD of 66.84mm.

Sensor Linear Multivariate ANN

Regressions
Landsat 5 TM 0.83 (Band 3) 0.84 0.69
ASTER 0.65 (Band 3) 0.88 0.87
RMSD (mm)
Landsat 5 TM 120.41 186.84 131.83
ASTER 66.84 97.94 82.32

Table 3. Average values of the field data collected in Pond A21. All data were analysed in the
USGS Western Coastal Marine Geology Laboratory.

Variable Average value

Surface suspended sediment concentration (mg/L) 46.16
Grain size (μm) 4.72
Settling velocity (m/s) 5.06� 10�3

Organic carbon content (% organic carbon) 2.08
Bulk density (kg/m3) 1600
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Predicting deposition in Pond A6

Sediment deposition was predicted for Pond A6 in the Alviso complex using the
MARSED model, and cumulative deposition is shown in Figure 3. An initial run of the
model with the same rates of deposition and initial conditions as for Pond A21 did not
yield marsh equilibrium levels to provide a stable habitat for vegetation colonization
within a 36-month time frame. The model was then run for a longer time frame,
yielding equilibrium levels after 60months.

Model sensitivity

When considering the model sensitivity to tidal velocity (Figure 4), the time until marsh
equilibrium can vary significantly. The field data line shows the true values for marsh
accumulation over time measured by field parameters (Callaway et al. 2009). The high,
medium, and low tidal velocity curves correspond to different marsh accumulation rates
for each run. The incoming tidal velocity was estimated to be 7, 10, and 12mm/s for
the lowest, medium, and highest tidal velocities, respectively. For the final model run,
the lowest tidal velocity of 7mm/s was used.

Model sensitivity results to the time step are shown in Figure 5. A time-step of 5 s
produces larger errors initially, but eventually results in the same concentration value as

Figure 2. Linear regression between SSCs (from USGS and field samples) and reflectance
values from Landsat TM. Landsat band 3 (630–690 nm) reflection correlated strongly with
suspended sediment concentration.
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the other time steps. For this analysis, a time-step of 0.001 s was used. Because accu-
mulation of a marshland occurs at timescales much larger than those producing errors
here, a time step on or under the order of hours could have been used.
Model deposition sensitivity to changes in the period of slack is shown in Figure 6. A
slack time of 0.5 h produces less than half of the amount of deposition compared to a
1.5 h slack time. The total time of slack was chosen to be 1.5 h due to the average slack
time observed in the study area (NOAA 2011).

Discussion

Field results of SSC values compared well with the satellite image calibration of SSC
values. The field validation using multivariate correlation provides the best possible
SSC map for input into the MARSED model. Field values of SSC content were neces-
sary for a consistent and accurate calibration of the satellite imagery for input to the
MARSED model. The low organic content of sediment in our samples can be attributed

Figure 3. Pond A6 showing sediment deposition in mm. The locations of the levee breaches
(yellow) are indicated. Also, the South Bay flows into Coyote Creek near Pond A6.
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to the fact that Pond A21 is a continuously developing marsh with little biological
activity. Thus, this variable did not contribute significantly to overall deposition totals.

When comparing the three regression techniques for calculating SSC values, it was
found that band 3 was the most accurate using the linear regression method with Land-
sat TM 5 imagery. Multivariate and ANN regressions using ASTER imagery, however,

Figure 5. Sensitivity of the MARSED model to the length of the time steps. Time steps of 0.01
s produces a relatively more stable curve than the other, and for accuracy purposes, a time step of
0.001 s was used in this study.

Figure 4. MARSED model sensitivity to the input tidal velocity. Deposition is cumulative over
the three years post-breach.
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proved to be the most accurate correlation method overall, and this is attributed to the
more detailed resolution (smaller pixel size) of ASTER compared with Landsat TM 5
as well as the higher number of bands across which the field data can be compared.
However, the linear regression method using ASTER produced the lowest regression
value, and this can be attributed to the lack of field data for the overpass of the ASTER
sensor as well as the fact that only one band could be used for each regression. While
many previous studies have demonstrated the value of using the visible spectrum for
SSC analysis, our study considered spectra outside of the visible region and used a mul-
tivariate statistical technique with multiple bands. A multivariate technique allows for a
broader use of the available data and considers a wavelength spectrum that is not
widely used in this field.

The MARSED model can accurately predict marsh sedimentation in the newly
breached salt ponds in the South San Francisco Bay. The accuracy of the MARSED
model is dependent on field data and GIS inputs. In the case of prediction using ASTER,
the linear technique produced the lowest RMSD for the model, whereas multivariate
regression produced the best correlation between SSC and reflectance (Table 4). This
was surprising – linear regression, being the simplest statistical method used, was not
expected to produce the most accurate marsh accumulation estimates. This discrepancy
could have resulted from bias in the model, which systematically overestimated marsh
accumulation. This overestimation most likely arose because the model does not account
for compaction or resuspension of settled sediment processes, which inhibit marsh eleva-
tion rise. Resuspension may be wind generated (driven by shear velocity and water
depth) or tidally generated (when ebb tide moves water and sediment out of the ponds).

Figure 6. Sensitivity of the MARSED model to the time of the slack period. Because tides vary
each day, and because the ponds are shielded from large variations in tides, a slack period of
1.5 h was chosen.
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The inherent error of the model can also be attributed to the deviation of the reflectance
values from the true SSC values. Reflectance values are measured to the fifth decimal
place, whereas SSCs are reported to the second decimal place. This discrepancy could
result in multiple reflectance values for the same SSC value, thus increasing error in the
analysis. The cumulative marsh sedimentation curve is shown in Figure 4. The marsh
initially rises rapidly, but sedimentation rates slow as the marsh sediment nears a stable
height relative to sea-level that allows for vegetation colonization. The height of marsh
growth will vary with the initial elevation of the pond; however, once equilibrium with
sea-level is reached, the marsh will no longer accumulate sediment.

The MARSED model predicted that Pond A6 would reach equilibrium in approxi-
mately 60 months. One interpretation for the longer time frame compared with other
ponds is that a longer time frame was necessary because SSCs are consistently lower (by
about half) around A6 than around A21, leaving less sediment for deposition and result-
ing in lower marsh accumulation rates in A6. The location of the levee breaches also fac-
tored into the longer time frame for marsh establishment in A6 (Figure 3). Pond A6 has
two breaches along a slough divergent from the relatively calm Coyote Creek, as well as
two breaches connecting the Pond to the relatively strong tidal currents of the South
Bay. The tidal influences from the breach on the west side of Pond A6 may increase the
potential for erosion and further inhibit marsh accumulation from the rates observed in
Pond A21. The initial height of Pond A6 also factors into the time frame required for the
marsh to reach equilibrium. Pond A6 has experienced much more subsidence and
compaction than other ponds and initially had lower elevations. Because of its low initial
elevation, Pond A6 requires more sediment deposition to reach equilibrium.

Sensitivity analysis results show that the time of slack and the settling velocity are
variables that cause model sensitivity. We assumed the lowest tidal velocity in our
model because of the geometry of the study area. The tidal velocities we chose for the
analysis are slow relative to typical velocities of tides and to velocities outside of the
pond breaches. Since the ponds fill up from multiple input points, we assumed that flow
in through these points would sufficiently suppress the tidal velocity, allowing for
sediment accumulation. Small changes in the assumed tidal velocity produced signifi-
cant changes in the accumulation. For example, the lowest tidal velocity produced the
highest amount of marsh accumulation because sediments can only settle when condi-
tions are at or near slack.

Although the model produced results that are applicable to other wetland restoration
efforts, outliers in the error of the MARSED model’s predictions indicate a need for fur-
ther assessment of environmental variables. Four outliers greatly underestimated sedi-
ment accumulation in the model, and were not included in the RMSD calculations.
These outliers corresponded with locations along the south-eastern perimeter of Pond
A21, where unaccounted influences from the tidal channel and from pond geometry
may have significantly heightened true marsh accumulation. When outliers were
excluded, the model’s RMSD of 66.84mm fell within one standard deviation of actual
accumulation values. Due to highly accurate depositional estimates, the model is a use-
ful tool for studying future wetland restoration efforts; however, the sensitivity of the
model should be considered for future use in other wetland ecosystems.

Conclusions

In this study, SSCs were successfully calibrated to remote sensing reflectance values
using three statistical techniques: linear regression, multivariate regression and ANN
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regression. Multivariate correlations with ASTER provided the best r2 value (0.88). The
output suspended sediment maps were then used in the MARSED model to predict sed-
iment deposition for Pond A21. Model results show excellent correlation with observed
sedimentation rates from Pond A21 with a RMSD of 66.8mm (approximately 2.6
inches). Overall, the model is an accurate predictor of sedimentation for the South San
Francisco Bay salt ponds and can be a useful and successful tool for future management
decisions. The model can aid restoration managers not only in deciding the ideal loca-
tion for a breach, but also in providing time estimates for a newly breached pond to
reach equilibrium levels.
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