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Abstract: Because of rare but serious adverse events, pharmaceutical drugs and vaccines are
sometimes withdrawn from the market, either by a government agency such as the Food and
Drug Administration (FDA) in the United States or by the manufacturing pharmaceutical
company. In other cases, a drug may be generally safe but increase the risk for serious
adverse events for certain subpopulations such as pregnant women or people with heart
problems. Due to limited sample size and selected study populations, rare adverse events are
often impossible to detect during phase 3 trials conducted before the drug is approved for
general use. It is then important to conduct post-approval drug safety surveillance, using,
for example, health insurance claims data. In such surveillance, the goal should be to detect
serious adverse events as early as possible without too many false alarms, and it is then
natural to use a continuous or near-continuous sequential test procedure that reevaluates
the data on a daily or weekly basis.

In this article, we first show that Wald’s classical sequential probability ratio test (SPRT)
for continuous surveillance is very sensitive to the choice of relative risk required in the
specification of the alternative hypothesis, making it difficult to use for drug and vaccine
safety surveillance. We instead propose the use of a maximized sequential probability ratio
test (MaxSPRT) based on a composite alternative hypothesis, which works well across a
range of relative risks. We illustrate the use of this method on vaccine safety surveillance
and compare it with the classical SPRT.
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A table of critical values for the MaxSPRT is provided, covering most parameter choices
relevant for vaccine and drug safety surveillance. The critical values are based on exact
numerical calculations. We also calculate the statistical power, the expected time until the
null hypothesis is rejected, and the average length of surveillance.

Keywords: Drug safety; Pharmacovigilance; Rapid cycle analysis; Sequential analysis;
Surveillance.

Subject Classifications: 62L10; 92C50.

1. INTRODUCTION

The early detection of unexpected adverse events is very important in both drug and
vaccine safety surveillance. Though common adverse events are often detected during
phase 2 and 3 clinical trials, rare but serious adverse events may go undetected due
to limited sample size. Other adverse events may go undetected if they only affect a
subpopulation that was excluded from the clinical trial. To catch these types of adverse
events it is important to conduct post-marketing drug and vaccine safety surveillance
(Davis et al., 2005; DuMouchel, 1999; O’Neill and Szarfman, 2001; Szarfman et al.,
2002). This can be done by monitoring adverse events among patients receiving these
drugs/vaccines as part of their regular medical care, using, for example, observational
health insurance claims data. Even when no adverse events are found, it is important
to do this type of surveillance to ensure the public that new drugs and vaccines are
not only effective but also safe, so that patients do not avoid taking important and
life-saving drugs/vaccines due to safety concerns.

In order to detect a problem with an adverse event as early as possible, the
ideal is to do near-continuous monitoring of patients as they receive the drug or
vaccine under study, generating an adverse event signal if and when the number
of adverse events are so great that they are unlikely to be due to chance alone.
For such continuous sequential analyzes, Wald (1945, 1947) proposed a sequential
probability ratio test (SPRT), where a signal is generated if the likelihood ratio
exceeds a certain predetermined value, and the observation ends if the likelihood
falls below another predetermined lower bound. The key aspect of this method
is that the p-values are adjusted for looking at the data in a continuous fashion,
or as often as the investigator wishes (i.e., multiple testing). Note that this is not
surveillance in the sense of detecting a change, so cumulative sum (CUSUM) and
other sequential quality control methods are not suitable in our context. Rather, we
want to do surveillance to monitor for an inherent safety problem that is always
present in the drug rather than detecting a suddenly occurring safety problem due
to, for example, a manufacturing problem in a new batch of the drug.

Sequential probability ratio tests have been extended and refined in various
ways, including Bayesian approaches (Lechner, 1962; Peskir and Shiryaev, 2000),
and both the theoretical and practical aspects of the field have been summarized
in excellent books by Ghosh et al. (1997), Jennison and Turnbull (2000),
Mukhopadhyay and de Silva (2009), and Govindarajulu (2004), among others.
Particularly relevant to this article are efforts to deal with composite alternatives
in various settings such as binomial proportions (Hoel et al., 1976; Joanes, 1972;
Meeker, 1981), normally distributed data (Lachin, 1981; van der Tweel et al.,
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1996), Poisson data (Abt, 1998), variance components (Ghosh, 1965), functions of
unknown parameters (Bangdiwala, 1982), as well as more general models using
asymptotic optimality (Lai, 1988; Schwarz, 1962), stepwise sequential probability
ratio tests (Huang, 2004), cost functions (Holm, 1985; Schipper et al., 1997), or
various approaches that reduce composite hypotheses to simple hypotheses (Ghosh,
1970; Lai, 2001; Wald, 1947). Lai (2001, section 2) provides an excellent review.

One problem with Wald’s classical sequential probability ratio test is that the
result is highly dependent on the relative risk used to specify the alternative hypothesis.
In this article we illustrate this problem in the context of vaccine safety surveillance,
showing that an unfortunate choice of the relative risk for the alternative hypothesis
may either delay the detection of an important signal or completelymiss it.We propose
instead the use of a maximized sequential probability ratio test (MaxSPRT), where the
alternative hypothesis is composite rather than simple, with the relative risk defined
as being greater than one rather than a specific value. Moreover, because there is no
reason to stop the study if the drug has a beneficial effect, we only use one critical value
boundary to reject the null hypothesis when an excess risk is found, in combination
with an upper boundary on the total length of surveillance. Because we do not use
acceptance and rejection boundaries that remain unchanged over time, MaxSPRT is
a “generalized sequential probability ratio test,” as defined by Weiss (1953, p. 273).
Because we are using a likelihood ratio with a composite alternative, MaxSPRT is
also a “sequential generalized likelihood ratio test,” a term first used by Siegmund
and Gregory (1980, p. 1223).

Asymptotic results are available for some sequential generalized likelihood ratio
tests (e.g., Lai, 1988; Schwarz, 1962; Woodroofe, 1978), but those results are not
applicable for calculating critical values for the MaxSPRT. Nor are asymptotic
approximations needed, because it is possible to obtain the critical values to
any desired precision using iterative numerical calculations. This is done for two
probability models relevant for drug and vaccine safety surveillance. In a Poisson
model, the number of adverse events at each time is compared with covariate
adjusted expected counts based on, for example, historical data or the scientific
literature. In a binomial model, the number of adverse events among exposed
individuals or time periods is compared with the number of adverse events among
matched controls or matched time periods. We provide tables with critical values
for different surveillance parameters, so that the users do not have to do any
computation of their own, except for calculating the test statistic itself, which can
be done using a pocket calculator or a spreadsheet. We also calculate the statistical
power, the expected time until the null hypothesis is rejected, and the average length
of surveillance.

The MaxSPRT was developed in response to direct vaccine safety surveillance
needs in the Centers for Disease Control and Prevention (CDC)-sponsored Vaccine
Safety Datalink (VSD) and, as such, it is already in practical use. In this article, the
method is illustrated using historical data on fever and neurological symptoms after
PediarixTM vaccination (GlaxoSmithKline Biologicals, Rixensart, Belgium). Though
this was the first test application, several real-time vaccine safety surveillance
applications of the MaxSPRT have already been published in the medical literature
(Belongia et al., 2010; Klein et al., 2010; Lieu et al., 2007; Yih et al., 2009), citing a
working version of this article.

For the rest of the article, we first briefly describe the Pediarix vaccine safety
data used to illustrate the methods. We then describe Wald’s classical SPRT and
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show how seemingly contradictory results are obtained depending on the choice of
alternative hypothesis, explaining why that happens. Next we present a maximized
SPRT with a composite alternative, for both Poisson- (Section 4) and binomial-
(Section 5) type data. We then apply the Poisson-based maximized SPRT to the
same Pediarix data, comparing it with the results from the classical SPRT. We end
with a discussion.

2. VACCINE DATA

To illustrate the use of both the classical SPRT and the MaxSPRT for vaccine safety
surveillance, we have applied them using a historical time series of health insurance
claims data from the CDC-sponsored VSD project. With these data, we mimic a
prospective weekly surveillance system for evaluating whether there is increased risk
of either fever or neurological symptoms within 28 days after Pediarix vaccination.
Manufactured by GlaxoSmithKline, Pediarix is a combination vaccine that with a
single injection protects children from five different diseases: diphtheria, tetanus,
whooping cough, hepatitis B, and polio. The VSD project and the data it uses have
been described in detail by Chen et al. (1997) and Davis et al. (2005). Here we only
give a brief overview.

Started in 1991, the Vaccine Safety Datalink is a collaborative project
between CDC and eight different health plans: Group Health Cooperative of
Puget Sound (Seattle, Wash.); Harvard Pilgrim Health Care/Harvard Vanguard
Medical Associates (Boston, Mass.); Health Partners (Minneapolis, Minn.), Kaiser
Permanente Colorado (Denver, Colo.), Marshfield Clinic (Marshfield, Wis.),
Northern California Kaiser Permanente (Oakland, Calif.), Northwest Kaiser
Permanente (Portland, Ore.), and Southern California Kaiser Permanente (Torrance,
Calif.). Together, these plans cover approximately 650,000 children in the United
States under the age of six, 3.5% of the total United States population in that age
group. As part of the project, immunizations of these children are automatically
tracked.Moreover, information about disease diagnoses made during routine medical
care at hospitals, emergency departments, and outpatient clinics is available. The data
are recorded for all medical events, so that one can tally the number of adverse events
seen within a risk window of a fixed number of days after vaccination.

3. WALD’S SEQUENTIAL PROBABILITY RATIO TEST

3.1. Mathematical Definition

Sequential analysis was first developed by Wald (1945, 1947), who introduced the
SPRT for continuous surveillance. The likelihood-based SPRT proposed by Wald
is very general in that it can be used for many different probability distributions. In
our setting, it is defined as follows.

Let Ct be the random variable representing the number of adverse events within
D days following a vaccination (or drug prescription) that was given during the time
period �0� t�, and let ct be the corresponding observed number of adverse events.
Note that time is defined in terms of the time of the vaccination rather than the time
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of the adverse event and that, hence, we actually do not know the value of ct until
time t +D.

Under the null hypothesis �H0�� Ct follows a Poisson distribution with mean �t,
where �t is a known function reflecting the population at risk. In our setting, �t

reflects the number of people who received the drug/vaccine during the time interval
�0� t� and a baseline risk for those individuals, adjusting for age and gender. Under
the alternative hypothesis �HA�, the mean is instead RR�t, where RR is the increased
relative risk due to the drug/vaccine. Note that C0 = c0 = �0 = 0.

With the classical SPRT, tests are performed continuously at every time point
t > 0 as additional data are collected. The test statistic is the likelihood ratio, which
for the Poisson distribution is defined as

LRt =
P�Ct = ct �HA�

P�Ct = ct �H0�
= e−RR�t �RR�t�

ct /ct!
e−�t�

ct
t /ct!

= e�1−RR��t �RR�ct

or, equivalently, as the test statistic is often defined using the log-likelihood ratio

LLRt = ln�LRt� = �1− RR��t + ctln�RR�

This test statistic is sequentially monitored for all values of t > 0, until either
LLRt ≥ ln��1− ��/��, in which case the null hypothesis is rejected, or until LLRt ≤
ln��/�1− ���, in which case it is accepted. With this stopping rule, the null
hypothesis will be falsely rejected with probability � when it is true (type 1 error),
and the alternative hypothesis will be falsely rejected with probability � when it is
true (type 2 error), although it should be noted that these are approximate results
(Wald, 1945, 1947). Note that LLR0 = 0.

As an example, for � = 0	05 and � = 0	20, the upper and lower rejection levels
are 2	77 and −1	56, respectively. We will use these two values for the SPRT
throughout the article. The SPRT is designed for continuous monitoring, but in
practice it is often evaluated at frequent but discrete time intervals, resulting in a
slightly conservative test procedure. In this article we use it for weekly data.

3.2. Pediarix Vaccination Safety Surveillance

The first question we will ask using the historical vaccine data is if there is an
increased risk of fever during the 4 weeks following Pediarix vaccination. The
top left of Figure 1 shows the result of the classical SPRT. With an alternative
hypothesis of HA 
 RR = 2	0, there is enough evidence to reject the alternative
hypothesis after 7 weeks, with the conclusion that there is no evidence that Pediarix
increases the risk of fever. With HA 
 RR = 1	2, we get the opposite result, with a
rejection of the null hypothesis after 13 weeks, with the conclusion that Pediarix
increases the risk of fever.

Why do we get these seemingly contradictory results? Suppose that the true
RR = 1	2. If the alternative hypothesis is HA 
 RR = 2; then there is more evidence
for the null hypothesis than for the alternative hypothesis and, hence, the alternative
hypothesis will be rejected. If the alternative is HA 
 RR = 1	2, then there is more
evidence for the alternative hypothesis than for the null hypothesis, and the null
hypothesis will be rejected. Hence, which hypothesis is rejected depends on the
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alternative hypothesis chosen. This makes perfect mathematical sense, but the
practical implications are disturbing, because we do not know beforehand what
excess relative risk we should look for.

One option would be to take a conservative approach by always choosing a
very low relative risk for the alternative hypothesis, so that any true relative risk
below that threshold is clinically unimportant and uninteresting to detect. That can
also lead to problems, though. In the top right part of Figure 1, the results are
shown when using the classical SPRT to evaluate an increased risk of neurological
symptoms during the 4 weeks following Pediarix vaccination. With HA 
 RR = 1	2,
there is some evidence of an excess risk, and after 65 weeks there is enough evidence
to reject the null hypothesis. If, instead, we use an alternative model with HA 
 RR =
2	0, then the null hypothesis is rejected after 32 weeks.

What is going on now? Suppose the true RR = 2. If the alternative model is
HA 
 RR = 1	2, then it is almost as bad as the null model with RR = 1, so the

Figure 1. Analyses of the safety of PediarixTM vaccination with respect to fever (left) and
neurological symptoms (right) during the 28 days following vaccination, using the classical
SPRT (top) with different relative risks defining the alternative hypothesis (RR = 1	2 and
RR = 2	0) and the MaxSPRT (bottom) with a composite alternative (RR > 1). The dashed
lines are the critical value bounds. The solid lines are values of the log-likelihood ratio test
statistics. The final point estimates for the true relative risk were 1.16 for fever and 2.75 for
neurological symptoms.
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log-likelihoods are similar and the log-likelihood ratio stays close to zero, and it will
take a long time until we reach the upper boundary to reject the null hypothesis. If
the alternative model is instead HA 
 RR = 2, then there is much more evidence for
the alternative than for the null hypothesis, resulting in a larger log-likelihood ratio,
and the null will be rejected much sooner. Again, this makes perfect mathematical
sense though the practical consequences are worrisome, because the time until we
detected a serious risk would be longer when using a low conservative relative risk
for the alternative hypothesis than if we had used a higher relative risk. Note that
if we are only concerned about power, but not in the time it takes to signal, this is
not a problem and we can safely use the classical SPRT with a simple alternative
chosen as the lowest relative risk of interest Wald (1947, p. 73).

Another way to look at this latter problem is in terms of statistical power and
sample size. If we want to detect a true relative risk of 1.2 with 80% power �� =
0	20�, then we need a larger sample size than if we want to detect a true relative
risk of 2.0 with the same power. Hence, with HA 
 RR = 1	2, we would expect to
have to wait longer until the null is rejected. One option around this problem would
be to modify the SPRT so that the likelihood calculations are based on the lowest
relative risk of interest to detect (e.g., HA 
 RR = 1	2) and the threshold is calculated
to guarantee the desired power for a higher relative risk (e.g., 80% power for HA 

RR = 2). Though it would be fairly easy to use computer simulations to calculate
the correct critical values for any combination of power and pairs of relative risks,
we think that a more natural approach is to use an MaxSPRT with a composite
alternative hypothesis, as described below.

4. A MAXIMIZED SEQUENTIAL PROBABILITY RATIO TEST:
POISSON DATA

For drug and vaccine safety surveillance, we propose the use of an MaxSPRT, with
a composite alternative hypothesis HA 
 RR > 1. The test statistic is the maximum
likelihood under the composite alternative hypothesis divided by the likelihood
under the simple null hypothesis (Lorden, 1973), and we reject the null hypothesis
if the test statistic reaches the critical value before an upper limit on the length of
surveillance is reached.

4.1. Log Likelihood Ratio

For the Poisson model, the MaxSPRT likelihood ratio based test statistic is

LRt = max
HA

P�Ct = ct�HA�

P�Ct = ct�H0�
= max

RR>1

e−RR�t �RR�t�
ct /ct!

e−�t�
ct
t /ct!

= max
RR>1

e�1−RR��t �RR�ct

The maximum likelihood estimate of RR is ct/�t when ct ≥ �t, so

LRt = e�t−ct �ct/�t�
ct
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when ct ≥ �t and LRt = 1 otherwise. Equivalently, when defined using the log-
likelihood ratio

LLRt = ln�LRt� = max
RR>1

��1− RR��t + ctln�RR��

= ��t − ct�+ ctln�ct/�t�

when ct ≥ �t and LLRt = 0 otherwise. Note that the maximum likelihood estimate
is unique and that it is also the minimum variance unbiased estimator. Though
the same is true for the binomial probability distribution in the next section, the
proposed approach may not work for other probability models for which these
properties do not hold.

4.2. Critical Values

When defining the critical values for the test statistic there are a few different
options. One is to use the classical SPRT approach and reject the null when the
LLR reaches an upper bound and accept the null when the LLR reaches a lower
bound. An alternative approach is to use any generalized SPRT (Weiss, 1953), where
the bounds are not constant over time. There are pros and cons with different
rejection and acceptance boundaries, and the choice will depend on the application.
We calculate critical values when there is a constant upper bound to reject the null
hypothesis, no lower bound to reject the alternative hypothesis, and the alternative
is rejected if and only if the surveillance has reached a predetermined upper limit
on the length of surveillance, defined in terms of the expected number of events
accrued under the null hypothesis. That is, the upper limit is defined in terms of
sample size rather than calendar time. For drug and vaccine safety surveillance we
like such boundaries. Because we are doing observational surveillance using data
that are collected regardless, there is no harm in continuing the surveillance if the
drug/vaccine is safe except for minor data analytic costs. It also puts an upper limit
on the length of surveillance, which the classical approach does not have.

In Table 1 we present the upper bounds used for the rejection of the null
hypothesis for different upper limits on the maximum length of surveillance. These
critical values are based on numerical calculations using the R software language
(R Development Core Team, 2009). To do these calculations, first note that the
time when the critical value is reached and the null hypothesis is rejected can only
happen at the time when an adverse event occurs. For a specified critical value V
and upper limit UL on the length of surveillance, it is then possible to calculate �,
the probability of rejecting the null, using an iterative approach, as follows. Let sn
be the latest possible time when the null will be rejected based on n adverse events.
This means that

LLRsn
= ��sn

− n�+ nln�n/�sn
� = V

and, hence,

�sn
= −n ∗W�−e−1−V/n�
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Table 1. Critical values for the MaxSPRT-based log-likelihood ratios for Poisson data. T
is the upper limit on the length of surveillance, expressed in terms of the expected number
of events under the null.

T � = 0	05 � = 0	01 � = 0	001

0.1 2.044069 4.119293 6.579669
0.2 2.266893 4.179630 6.754862
0.5 2.637928 4.483740 7.034472
1 2.853937 4.670428 7.172614
1.5 2.964971 4.778944 7.278202
2 3.046977 4.862223 7.341453
2.5 3.110419 4.924475 7.397851
3 3.162106 4.971792 7.445736
4 3.245004 5.040311 7.518319
5 3.297183 5.091907 7.569312
6 3.342729 5.136461 7.608607
8 3.413782 5.206326 7.673013
10 3.467952 5.260513 7.724863
12 3.511749 5.302914 7.767520
15 3.562591 5.351279 7.814719
20 3.628123 5.414770 7.877573
25 3.676320 5.463382 7.924478
30 3.715764 5.502563 7.962688
40 3.774663 5.561620 8.022182
50 3.819903 5.605972 8.067072
60 3.855755 5.642209 8.102340
80 3.910853 5.697631 8.157530
100 3.952321 5.738974 8.199403
120 3.985577 5.772435 8.232827
150 4.025338 5.812121 8.272692
200 4.074828 5.862113 8.322983
250 4.112234 5.899824 8.360938
300 4.142134 5.929897 8.391288
400 4.188031 5.976241 8.438008
500 4.222632 6.011088 8.473183
600 4.250310 6.039013 8.501314
800 4.292829 6.081871 8.544590
1,000 4.324917 6.114225 8.577253

where W is Lambert’s W -function, the inverse of the function f�x� = xex, so that
W�xex� = x. Lambert’s W is also called the product log.

At time s1 there are either zero events, in which case the surveillance continues,
or at least one event, in which case the null is rejected, and it is easy to calculate
these Poisson-based probabilities. If there were zero events at time s1, we calculate
the probability of zero, one, or two or more events at time s2, which are also
Poisson-based probabilities. If there were zero or one event at time s2, we calculate
the probabilities of 0� 1� 2, or 3+ events at time s3, and so on. Having n or more
events at time sn is always an absorbing state leading to the rejection of the null
hypothesis. When sn > UL we stop, after first calculating the probability of having
n or more adverse events at time UL given the probabilities at time sn−1.
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With this procedure we can calculate � for any specified critical value, but it is
really the reverse that we want, calculating the critical value for any specified �. This
is done through interpolation. Suppose that we want the critical value for � = 0	05.
First calculate ��V1� and ��V2� for two reasonable guesses on the critical value. Then
calculate

Vi+1 = Vi − �Vi − Vi−1�
��Vi�− 0	05

��Vi�− ��Vi−1�

and repeat this iteratively until the desired precision on � has been obtained. If
the initial values are estimated based on the critical value from closely related
upper limits, the procedure will converge to a precision of 0.00000001 within
approximately three to four iterations. For any initial values in the [2, 10] range, it
will usually converge in at most seven iterations.

Note that these numerical calculations only have to be done once for each �

and UL pair. Hence, users of the MaxSPRT do not need to do their own numerical
calculations, as long as they use one of the upper limits presented in Table 1.

As expected, the longer we are willing to do the surveillance, the larger the LLR
must be before we reject the null hypothesis. This is because there is more multiple
testing that needs to be adjusted for. Hence, the less willing we are to stop early and
accept the null hypothesis, the longer it takes to reach the critical value needed to
stop and reject the null hypothesis.

It is important to note that the null hypothesis should be rejected as soon as the
LLR reaches the critical value, even if it subsequently drops below again. Allowance
for this is taken into account when the critical value is determined. In fact, due to
the randomness of the data, it is rather typical that the LLR falls below the critical
value soon after it reaches it for the first time but then climbs above again and stays
above.

4.3. Statistical Power

In addition to ensuring the correct � level, it is important to consider the statistical
power to reject the null for different true relative risks. This is presented in Table 2,
based on exact numerical calculations similar to those used for the critical values.
The power is obviously higher when the true relative risk is larger, so the main
interest is to compare the power for different upper bounds on the length of
surveillance. As expected, the power for the maximized SPRT is higher when T ,
the expected number of events defining the maximum length of surveillance, is
larger. This is natural because the sample size is allowed to grow larger before the
surveillance ends. In fact, the power obtained is a natural criterion to use when
selecting the upper limit on the length of surveillance. The trade-off is that we must
be willing to collect data for a longer time period if the null is not quickly rejected.
Hence, the choice of the upper limit on surveillance length is the classical trade-off
between sample size and power, although we often do not have to utilize the full
sample size that we allow for.
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Table 2. Statistical power for the Poisson-based MaxSPRT for different true relative risks.
The type 1 error is � = 0	05. T is the upper limit on the length of surveillance, expressed in
terms of the expected number of events under the null.

True relative risk

T 1.2 1.5 2 3 5 10

0.1 0.060 0.075 0.100 0.148 0.242 0.449
0.2 0.062 0.081 0.115 0.187 0.337 0.648
0.5 0.066 0.093 0.147 0.273 0.532 0.899
1 0.070 0.107 0.185 0.379 0.729 0.987
1.5 0.073 0.118 0.221 0.475 0.852 0.9987
2 0.076 0.130 0.255 0.561 0.924 0.9999
2.5 0.078 0.140 0.289 0.637 0.962 0.999990
3 0.081 0.151 0.323 0.703 0.981 0.999999
4 0.086 0.172 0.390 0.809 0.996 1
5 0.089 0.190 0.447 0.876 0.9992 1
6 0.093 0.208 0.500 0.920 0.9998 1
8 0.100 0.244 0.600 0.970 0.9999943 1
10 0.107 0.280 0.685 0.989 0.9999998 1
12 0.114 0.315 0.756 0.996 1 1
15 0.123 0.367 0.836 0.9993 1 1
20 0.138 0.450 0.921 0.99997 1 1
25 0.153 0.526 0.963 0.999999 1 1
30 0.167 0.596 0.984 1 1 1
40 0.196 0.713 0.997 1 1 1
50 0.225 0.803 0.9996 1 1 1
60 0.254 0.868 0.99994 1 1 1
80 0.311 0.944 0.999999 1 1 1
100 0.368 0.978 1 1 1 1
120 0.424 0.992 1 1 1 1
150 0.505 0.998 1 1 1 1
200 0.623 0.99990 1 1 1 1
250 0.722 0.9999952 1 1 1 1
300 0.800 0.9999998 1 1 1 1
400 0.903 1 1 1 1 1
500 0.956 1 1 1 1 1
600 0.981 1 1 1 1 1
800 0.997 1 1 1 1 1
1,000 0.9996 1 1 1 1 1

4.4. Signal Timeliness and Length of Surveillance

In sequential analyses it is not only the � level and statistical power that are
important but also the time it takes to reject the null hypothesis when the alternative
is true. Conditioned on the null being actually rejected, the top part of Table 3
shows the expected time until rejection for different parameter values. The bottom
part of the table shows the expected length of surveillance, until either the null
hypothesis is rejected or accepted. In some applications, it is also important to
consider the time until the alternative hypothesis is rejected when the null hypothesis
is true, but in drug and vaccine safety surveillance that is not a major concern.
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Table 3. Average length of surveillance for the Poisson-based MaxSPRT. The top part of
the table is the time until a signal is generated rejecting the null hypothesis. The lower part
of the table is the time until the end of surveillance, either because of a signal or because of
reaching the upper limit on the length of surveillance. The type 1 error is � = 0	05. T is the
upper limit on the length of surveillance. All times are expressed in terms of the expected
number of events under the null hypothesis.

True relative risk

T 1 1.2 1.5 2 3 5 10

Average time until H0 is rejected
1 0.22 0.25 0.30 0.35 0.39 0.37 0.22
2 0.40 0.51 0.63 0.75 0.79 0.62 0.24
5 0.96 1.38 1.82 2.09 1.78 0.83 0.26
10 1.83 2.99 4.02 4.13 2.45 0.87 0.27
20 3.48 6.70 8.68 6.96 2.67 0.91 0.28
50 8.06 19.76 20.45 8.94 2.82 0.96 0.30
100 15.13 43.78 29.93 9.30 2.92 0.99 0.31
200 28.37 89.73 33.00 9.62 3.01 1.02 0.32
500 64.95 171.79 34.40 10.01 3.12 1.06 0.33
1,000 121.49 196.27 35.37 10.27 3.20 1.08 0.33

Average time until surveillance ends
1 0.96 0.95 0.93 0.88 0.77 0.54 0.23
2 1.92 1.89 1.82 1.68 1.32 0.72 0.24
5 4.80 4.68 4.40 3.70 2.18 0.83 0.26
10 9.59 9.25 8.33 5.98 2.53 0.87 0.27
20 19.17 18.17 14.91 8.00 2.67 0.91 0.28
50 47.90 43.20 26.28 8.96 2.82 0.96 0.30
100 95.76 79.28 31.46 9.30 2.92 0.99 0.31
200 191.42 131.25 33.02 9.62 3.01 1.02 0.32
500 478.25 186.15 34.40 10.01 3.12 1.06 0.33
1,000 956.07 196.59 35.37 10.27 3.20 1.08 0.33

4.5. Aggregated Data

The MaxSPRT is, just as the classical SPRT, formulated for data that are
continuously collected and evaluated. In drug and vaccine surveillance, it is often
more practical to collect data on a slightly aggregate basis such as weekly or
monthly counts. If the log-likelihood ratio is only evaluated at the end of each
week, the MaxSPRT will be slightly conservative in that the probability of rejecting
the null when it is true is somewhat less than the nominal � level. It will also
result in a slight delay in detecting a true signal. A slightly modified approach,
which will maintain the correct � level, is to randomly allocate the adverse event
observations within the expected counts accrued during that week by using a
uniform distribution. For example, suppose there were two observed adverse events
compared to 1.2 expected during the first week of surveillance. Each of the two
observed events will then be randomly assigned in the [0, 1.2] interval according to
the uniform distribution, independently of each other.
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In most practical settings, either approach will work fine without major
differences in the results as long as the level of aggregation is modest. The
MaxSPRT should not be used when the sequential testing is done in a less frequent
manner though, such as once every year, because it would then adjust for more
multiple testing than necessary. It is then more appropriate to use group sequential
methods (Jennison and Turnbull, 2000).

5. A MAXIMIZED SEQUENTIAL PROBABILITY RATIO TEST:
BINOMIAL DATA

Reliable estimates for the expected number of events are not always available
before the start of drug and vaccine safety surveillance. An alternative design
is then to collect information about potential adverse events from both exposed
and unexposed times. For example, in a self-control design, we may compare
an exposed time period after vaccination with an unexposed time period before
vaccination from the same individual or with an unexposed time period long after
vaccination. Alternatively, we may compare individuals exposed to the drug/vaccine
with matched unexposed individuals. Unless the unexposed time period is much
longer than the exposed, we cannot use the Poisson distribution. We should instead
use a binomial probability model when calculating the log-likelihood function and
the critical values. The upper limit on the length of surveillance will also be different
and will now be defined in terms of the number of adverse events seen. That is,
we would continue the surveillance until either there is a signal rejecting the null
hypothesis or when we have observed a total of N adverse events in the exposed
and unexposed time periods combined. In essence, we have a number of coin tosses
(adverse events), which may either turn up as head or tail (exposed or unexposed).
Under the null hypothesis, the probability of a head is known to be p, where p = 0	5
for a 1:1 matching ratio when the exposed and unexposed time periods are of the
same length, p = 0	25 for a 1:3 matching ratio, etc.

Other than these differences, the principles behind the MaxSPRT are the same
for Poisson- and binomial-type data.

5.1. Log-Likelihood Ratio

Let n be the number of adverse events seen so far during the sequential data
collection, and among those n events, let cn ≤ n be the number of adverse events
during the exposed time periods. Let z be the length of the matched unexposed time
period divided by the length of the exposed time period. Conditional on the number
of adverse events n, we can then write the likelihood ratio for the binomial model as:

LRn = max
HA

P�Cn = cn�HA�

P�Cn = cn�H0�
= max

RR>1

�RR/�z+ RR��cn �z/�z+ RR��n−cn

�1/�z+ 1��cn �z/�z+ 1��n−cn

The maximum likelihood estimate of RR is zcn/�n− cn�. So

LRn =
�cn/n�

cn ��n− cn�/n�
n−cn

�1/�z+ 1��cn �z/�z+ 1��n−cn
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when zcn/�n− cn� > 1 and LRn = 1 otherwise. Equivalently, when defined using the
log-likelihood ratio

LLRn = ln�LRn�

= cnln

(
cn
n

)
+ �n− cn�ln

(
n− cn

n

)
− cnln

(
1

z+ 1

)
− �n− cn�ln

(
z

z+ 1

)

when zcn/�n− cn� > 1 and 0 otherwise.

Table 4. Critical values for the log-likelihood ratios from the MaxSPRT for binomial data
for 1, 2, and 3 unexposed individuals per exposed, respectively. N is the upper limit on the
length of surveillance, defined in terms of the observed number of adverse events. For small
N and small � levels it is not always possible to reject the null even if all adverse events
are among the exposed. Such combinations of parameter values make the MaxSPRT non
applicable (n/a).

Matching ratio 1:1 Matching ratio 1:2 Matching ratio 1:3

N 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

3 n/a n/a n/a 2.19723 n/a n/a 2.77259 n/a n/a
4 n/a n/a n/a 2.19723 n/a n/a 2.77259 4.15889 n/a
5 2.77259 n/a n/a 2.29791 4.39445 n/a 2.77259 4.15889 5.54518
6 2.77259 n/a n/a 2.29791 4.39445 n/a 2.77259 4.15889 5.54518
8 2.77259 4.15889 n/a 2.90393 4.39445 6.59168 2.77259 4.15889 6.93148
10 2.77259 4.15889 6.23833 2.90393 4.39445 6.59168 2.77259 4.15889 6.93148
12 2.77259 4.27363 6.23833 3.19516 4.39445 6.59168 2.77259 4.39445 6.93148
15 2.89118 4.50710 6.72326 3.19516 4.39445 6.59168 2.77259 4.45847 6.93148
20 3.09884 4.85204 6.93148 3.29584 4.39445 6.89371 2.77259 4.51579 6.93148
25 3.13949 4.85204 6.93148 3.29584 4.59581 7.04215 2.87683 4.51579 6.93148
30 3.39139 4.85204 6.93148 3.29584 4.86283 7.04215 3.00043 4.60292 6.93148
40 3.46574 4.85989 7.34969 3.29584 4.93395 7.31447 3.23539 4.79047 6.97759
50 3.46574 4.88272 7.36129 3.29584 5.08104 7.41709 3.31895 4.92501 7.08667
60 3.46574 4.96051 7.44608 3.29584 5.08160 7.63273 3.33085 5.05772 7.18758
80 3.46574 5.11924 7.62462 3.30986 5.17987 7.69029 3.33085 5.23455 7.37322
100 3.46574 5.31315 7.62462 3.43691 5.30927 7.69029 3.45219 5.36765 7.56519
120 3.47863 5.37043 7.62462 3.48031 5.45081 7.69029 3.45660 5.47676 7.67217
150 3.60597 5.44610 7.64717 3.53437 5.49307 7.69029 3.52540 5.51207 7.70334
200 3.68065 5.51372 7.77200 3.59470 5.49307 7.69029 3.64449 5.54518 7.77539
250 3.75290 5.54518 7.87014 3.67774 5.49307 7.76739 3.72423 5.54518 7.83649
300 3.82197 5.54518 7.94491 3.73387 5.49307 7.78945 3.78278 5.54518 7.89501
400 3.89723 5.54518 7.98030 3.78859 5.49307 7.90802 3.86715 5.54518 7.97126
500 3.95630 5.55891 8.05717 3.87392 5.53040 7.99256 3.92779 5.54518 8.05510
600 3.97652 5.62593 8.12388 3.93147 5.55664 8.04060 3.98762 5.54518 8.11146
800 4.06641 5.68788 8.19592 4.02452 5.62280 8.07877 4.07561 5.60324 8.21196
1,000 4.12966 5.76441 8.25052 4.09409 5.67413 8.14459 4.11634 5.64641 8.23855
1,200 4.15888 5.79584 8.30479 4.12633 5.71949 8.20833 4.15889 5.69864 8.23855
1,500 4.15888 5.83888 8.31777 4.14389 5.78536 8.25265 4.15889 5.73464 8.30161
2,000 4.15888 5.91773 8.31777 4.18194 5.83545 8.31836 4.15889 5.74860 8.31777
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5.2. Critical Values

The critical values for the MaxSPRT for binomial data are provided in Table 4.
Note that the critical values are often identical for different values of the upper
limit on the survival length N . This is because of the discrete nature of the data.
For example, with N = 10 there are only 210 = 1�024 possible outcomes of the
surveillance, because each of the 10 adverse events will either be during an exposed
or an unexposed time period. This discreteness also means that the actual � level is
usually somewhat smaller than the nominal 0	05 but never higher.

The critical values for the binomial model were calculated analytically, using an
iterativeMarkov chain approach, and hence there is no need for computer simulations
or approximate asymptotic results. Because of the discrete nature of the data, there are
only a finite number of values that the likelihood can take. For each of these likelihood
values l, a separate Markov chain is constructed. The state space of the Markov chain
is �n� cn�, where n > 0 and 0 ≤ cn ≤ n. For the value n, the probability for each state
can easily be computed iteratively from the probabilities for the value n− 1, with the
initial condition that P��0� 0�� = 1. Those states for which LLRn�cn� ≥ l are absorbing
states. By summing the probabilities of the absorbing states we get the � level when
the likelihood value l is used as the critical value.

6. EXAMPLE: PEDIARIX VACCINE SAFETY SURVEILLANCE

We applied the Poisson-based MaxSPRT to the same Pediarix data that we
analyzed using the classical SPRT in Section 3. As the upper limit on the length
of surveillance we choose 800 and 15 expected events for fever and neurological

Table 5. Number of weeks until a signal is seen for the MaxSPRT, with different upper limits
on the length of surveillance, and for the classical SPRT, with different relative risks used
for the alternative hypothesis. For values in bold, the null hypothesis was rejected, indicating
that the vaccine causes fever. For values in italic, the null hypothesis was accepted, indicating
that the vaccine does not increase the risk of fever/neurological symptoms. After 82 weeks of
surveillance, the observed relative risk was 1.16 for fever and 2.7 for neurological symptoms.

Fever Neurological

� = 0	05 � = 0	01 � = 0	05 � = 0	01

MaxSPRT
T ∼ 2 years 13 17 42 42
T ∼ 1 year 13 17 42 42
T ∼ 3 months 13 17 32 42

Classical SPRT
RR = 1	05 36 73 >82 >82
1.1 16 30 >82 >82
1.2 13 16 65 >82
1.5 13 13 42 52
2.0 7 7 32 42
5.0 1 1 13 13
10.0 1 1 6 6
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symptoms, respectively, corresponding to approximately to 2 years of surveillance.
The results are shown at the bottom of Figure 1.

For fever, the MaxSPRT rejects the null hypothesis after 13 weeks at the � =
0	05 level, due to 97 observed cases when 69.7 were expected under the null, with
RR = 1	39 and LLR = 4	78. For neurological symptoms, the MaxSPRT rejects the
null hypothesis after 42 weeks at the � = 0	05 level, due to 15 observed cases when
5	5 were expected under the null, with RR = 2	7 and LLR = 5	51.

In Table 5, we compare the results when using the MaxSPRT with different
upper limits on the length of surveillance and the classical SPRT for different
relative risks used for the alternative hypothesis. Results are provided for � levels of
0.05 and 0.01. The power for the classical SPRT depends on the true relative risk but
is set to be 0.80 for the alternative chosen. The power for the MaxSPRT depends
on the upper limit of the length of surveillance as well as on the true relative risk
as shown in Table 2. Note that under normal circumstances one would do at most
one of these analyses using prespecified parameter values, and we only present the
multiple results for methodological comparisons.

7. DISCUSSION

The VSD project uses weekly data to rapidly detect any vaccine safety problems.
The expected number of adverse events under the null hypothesis is typically very
small each week, and the number of weekly analyses is at least 100. This means that
we have near real-time surveillance, and it is then more appropriate to use sequential
methods for continuous surveillance rather than the group sequential methods that
are commonly used for clinical trials.

In this article we demonstrated an inherent problem when utilizing Wald’s
classic SPRT for continuous surveillance of vaccine and drug adverse events. We
then presented a maximized SPRT that uses a composite rather than a simple
alternative hypothesis. The MaxSPRT was explored for two different probability
models using the Poisson and binomial distributions respectively, but the general
approach can be used for other distributions such as the hypergeometric, suitable for
other types of data. The MaxSPRT has been shown to work well for vaccine safety
surveillance, with good statistical power and timeliness until signals are generated.

Though the focus of this article is methodological, the clinically relevant
findings of our analysis deserve a brief comment. First, as in any disease surveillance
setting, it is important to realize that a statistical signal may either be due to a true
excess risk or to other issues, including systematic differences in coding or diagnostic
practices. A signal is hence a call for a detailed epidemiological study rather than
proof of a clinical problem. Mild fever is a known side effect of Pediarix vaccination
(Partridge and Yeh, 2003), so it is not surprising that we see a 16% elevated risk in
our data. For neurological symptoms, we found that the excess number of cases is
at least partly explained by changes made in the medical health records encounter
forms affecting two different neurological symptoms.

7.1. Abt’s SPRT

Ours is not the first Poisson-based sequential probability ratio test with a composite
alternative to be used for drug safety monitoring. Abt (1998) provided an important
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first step in that direction, using a different approach. For some values of a and b
specified by the user, with 0 < a < 1 and 0 < b < 1, define R�a� b� t� as

R�a� b� t� = arg min
RR>1

ln� 1−b
a
�+ �t�RR− 1�

ln�RR�

This means that, for each time t, R�a� b� t� is the value of the relative risk that
minimizes the number of cases needed to reject the null hypothesis of the classical
SPRT with � = a and � = b. The test statistic is then defined as

At =
P�Ct = ct �HA 
 RR = R�a� b� t��

P�Ct = ct �H0�
= e�1−R�a�b�t���t �R�a� b� t��ct

The upper and lower rejection limits are set to be ln��1− b�/a� and ln�b/�1− a��,
respectively, as with the classical SPRT. As Abt (1998) pointed out, because of
the minimization done when calculating R�a� b� t�� a and b no longer represent the
approximate type 1 and 2 errors. Rather, for any pair �a� b�, the true type 1 and
2 errors are calculated using simulations. For example, with a = 0	07 and b = 0	08,
the type 1 error is � = 0	1 and the type 2 error is � = 0	05 (Abt, 1998).

The difference between Abt’s SPRT and the MaxSPRT is that the former
finds the relative risk that minimizes the number of cases needed to reject the
null hypothesis with the classical SPRT, whereas the latter defines the test statistic
by maximizing the likelihood over different relative risk parameter values. This
latter approach is the standard way to deal with composite alternative hypotheses,
through the creation of a likelihood ratio test statistic (Lehmann, 1986).

7.2. Rejection and Acceptance Regions

In this article we have defined the critical bounds so that the null is rejected when
the LLR reaches a certain fixed value, and the null is accepted when the prespecified
upper limit on the length of surveillance is reached. This is a natural choice for
drug and vaccine safety applications but not the only option. The MaxSPRT can be
used with any other type of critical bounds as well, including the traditional upper
and lower bounds used by the classical SPRT as well as various generalized SPRT
rejection regions of triangular or other shapes. Calculating and providing tables for
critical values, statistical power, and timeliness for such versions of the MaxSPRT is
an important area for further work. In post-marketing safety surveillance, the main
issue is the time to signal, and there is not only a trade-off between type 1 error,
overall power, and timeliness to signal but, equally or more important, between the
timeliness to signal for different true excess risks. Because the objectives are very
different, these trade-offs are very different for post-marketing safety surveillance
versus pre-marketing clinical trials.

7.3. Critical Values

Though the critical values are based on extensive numerical calculations for the
Poisson model and nontrivial analytical calculations for the binomial model, a nice
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feature of the MaxSPRT is that the users do not have to do any of these calculations
themselves but, rather, can simply use the tables provided in this article in the same
old-fashioned way that we used to do for most statistical distribution functions. The
only exception is if the user wants to use some other parameter values for the � level,
for the upper limit on the length of surveillance, or for the matching ratio. The exact
values of these design parameters are not critical for most applications, though, and
for drug and vaccine safety surveillance it will almost always be possible to choose
suitable parameter values from those included in the tables.

7.4. Weekly Vaccine Safety Surveillance

The examples provided in this article used historical data to mimic a real-time
surveillance system. The CDC-sponsored VSD project has been or is currently
using MaxSPRT for weekly surveillance of the safety of meningococcal (Lieu et al.,
2007), tetanus-diphtheria-pertussis (Yih et al., 2009), rotavirus (Belongia et al.,
2010), measles-mumps-rubella-varicella (Klein et al., 2010), human papillomavirus,
seasonal influenza, and H1N1 influenza vaccines. For most of the vaccines, no safety
problems have been detected. For the combined measles-mumps-rubella-varicella
vaccine, the MaxSPRT detected an increases risk of febrile seizures, leading the
Advisory Committee on Immunization Practices to revise their recommendations
for its use (Klein et al., 2010). The method has also been evaluated for drug safety
surveillance using historical data from the HMO Research Network (Brown et al.,
2007).

For the Poisson-based MaxSPRT it is necessary to choose a comparison group
to calculate the expected counts. Likewise, for the binomial-based MaxSPRT, it
is necessary to choose a set of matched unexposed time periods or individuals
for each exposed person. As in any observational study, different designs are
prone to different types of confounding and bias. One option is to choose a
historical comparison group of people having received the old vaccine that the new
vaccine under surveillance is meant to replace in a Poisson MaxSPRT analysis.
For example, when monitoring the safety of the measles-mumps-rubella-varicella
vaccine, historical recipients of the older measles-mumps-rubella were used as the
control group. This helps to ensure that the two populations are reasonably similar,
but there could be bias due to, for example, temporal changes in disease incidence
or disease coding practices. To overcome the latter, one may instead use concurrent
matched controls and a binomial MaxSPRT, comparing individuals receiving the
vaccine with age- and gender-matched controls who had a well-care visit around
the same time. This resolves the issue of temporal trends, but individuals receiving
the vaccines may be generally healthier or less healthy than their matched controls,
introducing a different type of bias. A third option that has been used is a sequential
self-control design, where the number of adverse events in an exposed time window
just after vaccination is compared to the number of adverse events in an unexposed
time window either before the vaccination or long after vaccination. This removes
any bias due to differences between individuals. If a pre-vaccination comparison
window is used, though, there is a potential for confounding due to indication
or contraindication because a person diagnosed with the adverse event of interest
may be more or less prone to receive the vaccination, creating biased results. If a
comparison window long after vaccination is used, that reduces the timeliness of the
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surveillance system. Moreover, both self-control designs could suffer from bias if
there is seasonal variation in both the vaccine administration and the adverse event.
The severity of each of these potential sources of confounding depends on both the
vaccine and the adverse event under surveillance. Because different designs are prone
to different types of bias, it is sometimes worthwhile to use more multiple designs
for the same vaccine and adverse event pair. In two medically oriented papers, the
pros and cons of these different designs are discussed in more detail when used for
vaccine and drug safety surveillance (Brown et al., 2007; Lieu et al., 2007).
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