18
Views
226
CrossRef citations to date
0
Altmetric
Article

TFIIH-Associated Cdk7 Kinase Functions in Phosphorylation of C-Terminal Domain Ser7 Residues, Promoter-Proximal Pausing, and Termination by RNA Polymerase II

, , , , , & show all
Pages 5455-5464
Received 17 May 2009
Accepted 03 Aug 2009
Published online: 21 Mar 2023
 

The function of human TFIIH-associated Cdk7 in RNA polymerase II (Pol II) transcription and C-terminal domain (CTD) phosphorylation was investigated in analogue-sensitive Cdk7as/as mutant cells where the kinase can be inhibited without disrupting TFIIH. We show that both Cdk7 and Cdk9/PTEFb contribute to phosphorylation of Pol II CTD Ser5 residues on transcribed genes. Cdk7 is also a major kinase of CTD Ser7 on Pol II at the c-fos and U snRNA genes. Furthermore, TFIIH and recombinant Cdk7-CycH-Mat1 as well as recombinant Cdk9-CycT1 phosphorylated CTD Ser7 and Ser5 residues in vitro. Inhibition of Cdk7 in vivo suppressed the amount of Pol II accumulated at 5′ ends on several genes including c-myc, p21, and glyceraldehyde-3-phosphate dehydrogenase genes, indicating reduced promoter-proximal pausing or polymerase “leaking” into the gene. Consistent with a 5′ pausing defect, Cdk7 inhibition reduced recruitment of the negative elongation factor NELF at start sites. A role of Cdk7 in regulating elongation is further suggested by enhanced histone H4 acetylation and diminished histone H4 trimethylation on lysine 36—two marks of elongation—within genes when the kinase was inhibited. Consistent with a new role for TFIIH at 3′ ends, it was detected within genes and 3′-flanking regions, and Cdk7 inhibition delayed pausing and transcription termination.

ACKNOWLEDGMENTS

This work was supported by NIH grants GM063873 to D.L.B., GM056985 to R.P.F., and EB001987 to K.S. and by NIH fellowship 5F31 GM072099 to K.G.-C.

We thank J. Espinosa (University of Colorado), S. Kim, S. Johnson, and R. Perales for valuable suggestions, D. Eick (Helmholtz Center, Munich, Germany) for 4E12 antibody, and N. Fong for GST-CTD.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
EUR 50.00 Add to cart

* Local tax will be added as applicable
 

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.