Skip to Main Content
836
Views
6
CrossRef citations to date
Altmetric
 
Translator disclaimer

Abstract

This article proposes a framework that provides early detection of anomalous series within a large collection of nonstationary streaming time-series data. We define an anomaly as an observation, that is, very unlikely given the recent distribution of a given system. The proposed framework first calculates a boundary for the system’s typical behavior using extreme value theory. Then a sliding window is used to test for anomalous series within a newly arrived collection of series. The model uses time series features as inputs, and a density-based comparison to detect any significant changes in the distribution of the features. Using various synthetic and real world datasets, we demonstrate the wide applicability and usefulness of our proposed framework. We show that the proposed algorithm can work well in the presence of noisy nonstationarity data within multiple classes of time series. This framework is implemented in the open source R package oddstream. R code and data are available in the online supplementary materials.

Additional information

Funding

This research was supported in part by the Monash eResearch Centre and eSolutions-Research Support Services through the use of the MonARCH (Monash Advanced Research Computing Hybrid) HPC Cluster. Funding was provided by the Australian Research Council through the Linkage Project LP160101885.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

Issue Purchase 30 days to view or download: USD 141.00 Add to cart

* Local tax will be added as applicable