Skip to Main Content
296
Views
0
CrossRef citations to date
Altmetric
Pages 491-502
Received 01 Aug 2016
Accepted author version posted online: 09 Jan 2018
Published online: 06 Jun 2018
 
Translator disclaimer

ABSTRACT

Classical robust statistical methods dealing with noisy data are often based on modifications of convex loss functions. In recent years, nonconvex loss-based robust methods have been increasingly popular. A nonconvex loss can provide robust estimation for data contaminated with outliers. The significant challenge is that a nonconvex loss can be numerically difficult to optimize. This article proposes quadratic majorization algorithm for nonconvex (QManc) loss. The QManc can decompose a nonconvex loss into a sequence of simpler optimization problems. Subsequently, the QManc is applied to a powerful machine learning algorithm: quadratic majorization boosting algorithm (QMBA). We develop QMBA for robust classification (binary and multi-category) and regression. In high-dimensional cancer genetics data and simulations, the QMBA is comparable with convex loss-based boosting algorithms for clean data, and outperforms the latter for data contaminated with outliers. The QMBA is also superior to boosting when directly implemented to optimize nonconvex loss functions. Supplementary material for this article is available online.

Acknowledgments

The author thanks the editor and a referee for their valuable suggestions that have led to a better presentation of the article.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

Issue Purchase 30 days to view or download: USD 141.00 Add to cart

* Local tax will be added as applicable