Skip to Main Content
 
Translator disclaimer

ABSTRACT

The computation of Gaussian orthant probabilities has been extensively studied for low-dimensional vectors. Here, we focus on the high-dimensional case and we present a two-step procedure relying on both deterministic and stochastic techniques. The proposed estimator relies indeed on splitting the probability into a low-dimensional term and a remainder. While the low-dimensional probability can be estimated by fast and accurate quadrature, the remainder requires Monte Carlo sampling. We further refine the estimation by using a novel asymmetric nested Monte Carlo (anMC) algorithm for the remainder and we highlight cases where this approximation brings substantial efficiency gains. The proposed methods are compared against state-of-the-art techniques in a numerical study, which also calls attention to the advantages and drawbacks of the procedure. Finally, the proposed method is applied to derive conservative estimates of excursion sets of expensive to evaluate deterministic functions under a Gaussian random field prior, without requiring a Markov assumption. Supplementary material for this article is available online.

Additional information

Funding

The first author gratefully acknowledges the support of the Swiss National Science Foundation, grant number 146354 and of the Hasler Foundation, grant number 16065.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

Issue Purchase 30 days to view or download: USD 141.00 Add to cart

* Local tax will be added as applicable