Skip to Main Content
316
Views
3
CrossRef citations to date
Altmetric

Regression Analysis

A Multiobjective Exploratory Procedure for Regression Model Selection

Pages 154-182
Received 01 Nov 2012
Accepted author version posted online: 27 Mar 2014
Published online:31 Mar 2015
 
Translator disclaimer

Variable selection is recognized as one of the most critical steps in statistical modeling. The problems encountered in engineering and social sciences are commonly characterized by over-abundance of explanatory variables, nonlinearities, and unknown interdependencies between the regressors. An added difficulty is that the analysts may have little or no prior knowledge on the relative importance of the variables. To provide a robust method for model selection, this article introduces the multiobjective genetic algorithm for variable selection (MOGA-VS) that provides the user with an optimal set of regression models for a given dataset. The algorithm considers the regression problem as a two objective task, and explores the Pareto-optimal (best subset) models by preferring those models over the other which have less number of regression coefficients and better goodness of fit. The model exploration can be performed based on in-sample or generalization error minimization. The model selection is proposed to be performed in two steps. First, we generate the frontier of Pareto-optimal regression models by eliminating the dominated models without any user intervention. Second, a decision-making process is executed which allows the user to choose the most preferred model using visualizations and simple metrics. The method has been evaluated on a recently published real dataset on Communities and Crime Within the United States.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

Issue Purchase 30 days to view or download: USD 141.00 Add to cart

* Local tax will be added as applicable