Skip to Main Content
 
Translator disclaimer

ABSTRACT

Normalization transformations have recently experienced a resurgence in popularity in the era of machine learning, particularly in data preprocessing. However, the classical methods that can be adapted to cross-validation are not always effective. We introduce Ordered Quantile (ORQ) normalization, a one-to-one transformation that is designed to consistently and effectively transform a vector of arbitrary distribution into a vector that follows a normal (Gaussian) distribution. In the absence of ties, ORQ normalization is guaranteed to produce normally distributed transformed data. Once trained, an ORQ transformation can be readily and effectively applied to new data. We compare the effectiveness of the ORQ technique with other popular normalization methods in a simulation study where the true data generating distributions are known. We find that ORQ normalization is the only method that works consistently and effectively, regardless of the underlying distribution. We also explore the use of repeated cross-validation to identify the best normalizing transformation when the true underlying distribution is unknown. We apply our technique and other normalization methods via the bestNormalize R package on a car pricing data set. We built bestNormalize to evaluate the normalization efficacy of many candidate transformations; the package is freely available via the Comprehensive R Archive Network.

Acknowledgements

We wish to thank the referees for their valuable feedback, which served to improve the original version of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 44.00 Add to cart

Issue Purchase 30 days to view or download: USD 429.00 Add to cart

* Local tax will be added as applicable