Skip to Main Content
4,982
Views
43
CrossRef citations to date
Altmetric
 
Translator disclaimer

ABSTRACT

Despite the wide adoption of spike-and-slab methodology for Bayesian variable selection, its potential for penalized likelihood estimation has largely been overlooked. In this article, we bridge this gap by cross-fertilizing these two paradigms with the Spike-and-Slab LASSO procedure for variable selection and parameter estimation in linear regression. We introduce a new class of self-adaptive penalty functions that arise from a fully Bayes spike-and-slab formulation, ultimately moving beyond the separable penalty framework. A virtue of these nonseparable penalties is their ability to borrow strength across coordinates, adapt to ensemble sparsity information and exert multiplicity adjustment. The Spike-and-Slab LASSO procedure harvests efficient coordinate-wise implementations with a path-following scheme for dynamic posterior exploration. We show on simulated data that the fully Bayes penalty mimics oracle performance, providing a viable alternative to cross-validation. We develop theory for the separable and nonseparable variants of the penalty, showing rate-optimality of the global mode as well as optimal posterior concentration when p > n. Supplementary materials for this article are available online.

Funding

This work was supported by the James S. Kemper Foundation Faculty Research Fund at the University of Chicago Booth School of Business, and by NSF grant DMS -1406563.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 44.00 Add to cart

Issue Purchase 30 days to view or download: USD 268.00 Add to cart

* Local tax will be added as applicable