Skip to Main Content
894
Views
8
CrossRef citations to date
Altmetric
Pages 282-299
Received 01 Apr 2015
Accepted author version posted online: 02 Feb 2016
Published online:03 May 2017
 
Translator disclaimer

ABSTRACT

Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. Markov chain Monte Carlo (MCMC) methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain’s convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and nonergodic edge reversal moves. Here, we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally, the method can be combined with edge reversal moves to improve the sampler further. Supplementary materials for this article are available online.

Supplementary Materials

Supplementary materials contain R implementation of structure and order MCMC samplers, along with edge reversal and partition MCMC.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 44.00 Add to cart

Issue Purchase 30 days to view or download: USD 268.00 Add to cart

* Local tax will be added as applicable