Skip to Main Content
1,044
Views
16
CrossRef citations to date
Altmetric

Theory and Methods

Structured Matrix Completion with Applications to Genomic Data Integration

Pages 621-633
Received 01 Apr 2014
Accepted author version posted online: 01 Apr 2015
Published online:18 Aug 2016
 
Translator disclaimer

ABSTRACT

Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics, and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival. Supplementary materials for this article are available online.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 44.00 Add to cart

Issue Purchase 30 days to view or download: USD 268.00 Add to cart

* Local tax will be added as applicable