Skip to Main Content
 
Translator disclaimer

Abstract

We discuss the problem of approximating a deterministic function using Gaussian processes (GPs). The role of transformation in GP modeling is not well understood. We argue that transformation of the response can be used for making the deterministic function approximately additive, which can then be easily estimated using an additive GP. We call such a GP a transformed additive Gaussian (TAG) process. To capture possible interactions which are unaccounted for in an additive model, we propose an extension of the TAG process called transformed approximately additive Gaussian (TAAG) process. We develop efficient techniques for fitting a TAAG process. In fact, we show that it can be fitted to high-dimensional data much more efficiently than a standard GP. Furthermore, we show that the use of the TAAG process leads to better estimation, interpretation, visualization, and prediction. The proposed methods are implemented in the R package TAG.

Additional information

Funding

This research is supported by a U.S. National Science Foundation grant DMS-1712642 and a U.S. Army Research Office grant W911NF-17-1-0007.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

Issue Purchase 30 days to view or download: USD 105.00 Add to cart

* Local tax will be added as applicable