Skip to Main Content
 
Translator disclaimer

Abstract

Recently, researchers in clinical psychology have endeavored to create network models of the relationships between symptoms, both within and across mental disorders. Symptoms that connect two mental disorders are called "bridge symptoms." Unfortunately, no formal quantitative methods for identifying these bridge symptoms exist. Accordingly, we developed four network statistics to identify bridge symptoms: bridge strength, bridge betweenness, bridge closeness, and bridge expected influence. These statistics are nonspecific to the type of network estimated, making them potentially useful in individual-level psychometric networks, group-level psychometric networks, and networks outside the field of psychopathology such as social networks. We first tested the fidelity of our statistics in predicting bridge nodes in a series of simulations. Averaged across all conditions, the statistics achieved a sensitivity of 92.7% and a specificity of 84.9%. By simulating datasets of varying sample sizes, we tested the robustness of our statistics, confirming their suitability for network psychometrics. Furthermore, we simulated the contagion of one mental disorder to another, showing that deactivating bridge nodes prevents the spread of comorbidity (i.e., one disorder activating another). Eliminating nodes based on bridge statistics was more effective than eliminating nodes high on traditional centrality statistics in preventing comorbidity. Finally, we applied our algorithms to 18 group-level empirical comorbidity networks from published studies and discussed the implications of this analysis.

Acknowledgments: The authors would like to thank Patrick Mair and Sarah Horne for their comments on prior versions of this manuscript. The ideas and opinions expressed herein are those of the authors alone, and endorsement by the authors’ institutions or the National Science Foundation is not intended and should not be inferred.

Article information

Conflict of interest disclosures: Each author signed a form for disclosure of potential conflicts of interest. Mr. Jones reported a grant from the National Science Foundation. Other authors did not report any financial or other conflicts of interest in relation to the work described.

Ethical principles: The authors affirm having followed professional ethical guidelines in preparing this work. These guidelines include obtaining informed consent from human participants, maintaining ethical treatment and respect for the rights of human or animal participants, and ensuring the privacy of participants and their data, such as ensuring that individual participants cannot be identified in reported results or from publicly available original or archival data.

Funding: This work was supported by Grant DGE1745303 from the National Science Foundation.

Role of the funders/sponsors: None of the funders or sponsors of this research had any role in the design and conduct of the study; collection, management, analysis, and interpretation of data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 44.00 Add to cart

Issue Purchase 30 days to view or download: USD 261.00 Add to cart

* Local tax will be added as applicable