Skip to Main Content
 
Translator disclaimer

ARIMA is seldom used in supply chains in practice. There are several reasons, not the least of which is the small sample size of available data, which restricts the usage of the model. Keeping in mind this restriction, we discuss in this paper a state-space ARIMA model with a single source of error and show how it can be efficiently used in the supply-chain context, especially in cases when only two seasonal cycles of data are available. We propose a new order selection algorithm for the model and compare its performance with the conventional ARIMA on real data. We show that the proposed model performs well in terms of both accuracy and computational time in comparison with other ARIMA implementations, which makes it efficient in the supply-chain context.

Acknowledgments

We would like to thank Demand Works and especially Bill Tonetti and Eric Townson for their support and cooperation in testing of the models and their help in implementation of the ARIMA module in Smoothie.

Disclosure statement

No potential conflict of interest was reported by the authors.

Login options

Purchase * Save for later
Online

Article Purchase 24 hours to view or download: USD 51.00 Add to cart

* Local tax will be added as applicable