1,357
Views
274
CrossRef citations to date
0
Altmetric
Theory and Method

Efficient Estimation and Inferences for Varying-Coefficient Models

, &
Pages 888-902
Received 01 Mar 1999
Published online: 17 Feb 2012
 

Abstract

This article deals with statistical inferences based on the varying-coefficient models proposed by Hastie and Tibshirani. Local polynomial regression techniques are used to estimate coefficient functions, and the asymptotic normality of the resulting estimators is established. The standard error formulas for estimated coefficients are derived and are empirically tested. A goodness-of-fit test technique, based on a nonparametric maximum likelihood ratio type of test, is also proposed to detect whether certain coefficient functions in a varying-coefficient model are constant or whether any covariates are statistically significant in the model. The null distribution of the test is estimated by a conditional bootstrap method. Our estimation techniques involve solving hundreds of local likelihood equations. To reduce the computational burden, a one-step Newton-Raphson estimator is proposed and implemented. The resulting one-step procedure is shown to save computational cost on an order of tens with no deterioration in performance, both asymptotically and empirically. Both simulated and real data examples are used to illustrate our proposed methodology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.