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Introduction

Epigenetic mechanisms regulate gene expression without 
changes in DNA sequence and include DNA methylation, 
histone modifications, and non-coding RNAs.1–3 Growing 
evidence shows that epigenetics may be an interface through 
which environmental exposures affect gene expression and 
adverse health.4 DNA methylation, an addition of a methyl group 
at the carbon-5 position of cytosine (5mC) in CpG dinucleotides, 
is the best-studied epigenetic mechanism. Several technologies, 
including next generation sequencing and genome-wide arrays, 
are currently available to study the DNA methylome.5 However, 
sequencing technologies can be prohibitively expensive for use 
with population-based studies, which may require analysis of 
hundreds of samples in large data sets over multiple time points. 

Illumina’s 450K Methylation array has emerged as one of the 
preferred methodologies to study DNA methylation because 
of its optimal combination of genome-wide coverage (99% of 
RefSeq genes), comprehensive representation of functional gene 
sub-regions, good reproducibility across other platforms (r = 0.88 
with pyrosequencing),6,7 and relative affordability.

Before sources of biological variability in DNA methylation 
can be accurately assessed, it is critical to minimize technical 
variance and bias. Experiments involving hundreds of samples 
need to be run in several batches across a long time span, 
potentially exacerbating variation in instrumentation and assay 
chemistry. Differences between the measurement of the two 
colored probes (red and green), including labeling hybridization 
efficiency and chip scanning properties, can also introduce noise 
to methylation results. The Illumina proprietary software package 
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analysis of epigenetic mechanisms, particularly DNa methylation, is of increasing interest for epidemiologic studies 
examining disease etiology and impacts of environmental exposures. The Infinium humanMethylation450 Beadchip® 
(450K), which interrogates over 480 000 cpG sites and is relatively cost effective, has become a popular tool to character-
ize the DNa methylome. For large-scale studies, minimizing technical variability and potential bias is paramount. The 
goal of this paper was to evaluate the performance of several existing and novel color channel normalizations designed 
to reduce technical variability and batch effects in 450K analysis from a large population study. comparative assessment 
of 10 normalization procedures included the Genomestudio® Illumina procedure, the lumi smooth quantile approach, 
and the newly proposed all sample mean normalization (asMN). We also examined the performance of normalizations 
in combination with correction for the two types of Infinium chemistry utilized on the 450K array. We observed that the 
performance of the Genomestudio® normalization procedure was highly variable and dependent on the quality of the 
first sample analyzed in an experiment, which is used as a reference in this procedure. While the lumi normalization was 
able to decrease batch variability, it increased variation among technical replicates, potentially reducing biologically 
meaningful findings. The proposed asMN procedure performed consistently well, both at reducing batch effects and 
improving replicate comparability. In summary, the asMN procedure can improve existing color channel normalization, 
especially for large epidemiologic studies, and can be successfully implemented to enhance a 450K DNa methylation 
data pipeline.
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(GenomeStudio) adjusts for this variability of color signals 
across an experiment, which we refer to as the Illumina first 
sample normalization (IFSN). In addition, other normalization 
methodologies have recently been proposed, including smooth 
quantile normalization from the lumi R package8 and other 
pipelines drawing on its infrastructure.9,10

Another class of adjustment that has received attention in 
the literature addresses the two different 450K Infinium array 
chemistries: Infinium I, which was previously implemented on 
an older Illumina methylation 27K array, and Infinium II, which 
was added as coverage expanded for the 450K array. Recent 
studies have demonstrated that the signals from the Infinium I 
and II assays are likely not completely comparable: Infinium I 
has a broader dynamic range of methylation values, called βs, 
that tend to be more stable and reproducible in comparison to 
Infinium II,9,11 potentially introducing a source of bias based on 
the type of probe used. Several correction and normalization 
methodologies have been proposed to adjust for differences 
between the two 450K Infinium chemistries including peak-
based correction (PBC),11 subset quantile normalization 
(SQN and SWAN),9,12 and β-mixture quantile normalization 
(BMIQ).13 The PBC approach has been criticized in two recent 
publications for poor performance when its strong assumptions 
of bi-modality in β distributions are not met.9,12 However, a 
recent evaluation of the other available normalizations between 
Infinium I and II chemistries (SQN, SWAN, and BMIQ) 
showed them to be comparable.13 While initial assessment of 

each of these normalizations has been conducted,13,14 including 
evaluation of reductions in batch effects, the sample sizes used in 
these publications (ranging from 6–85 analyzed on 1–8 chips) 
have not been sufficient to detect the type of batch variability 
likely to occur in large population studies.

A complete 450K data preparation pipeline for epidemiologic 
analysis ideally includes several distinct components, including: 
subtraction of background signal, color channel normalization, 
checks for bisulfite conversion and extension efficiency, 
removal of poor performing CpG and SNP associated probes, 
and adjustment for Infinium chemistry. In the current study 
we conduct a focused assessment of the performance of color 
channel normalization procedures, one key aspect of 450K data 
preparation. Our study evaluates 10 procedures: two existing 
normalizations (IFSN and lumi), several variations on the method 
used by IFSN normalization, called reference factor (RN) based 
normalizations, and proposed here a new optimized All Sample 
Mean Normalization (ASMN) procedure. Our analysis uses 
a large data set of 432 samples (36 chips/5 plates) to identify 
which procedures most effectively minimize technical variation 
in population-based studies.

Results

To assess color channel normalization performance, 10 
procedures were implemented on 450K data from a large 
epidemiologic cohort. These procedures fell into two distinct 

Figure 1. Flowchart of normalizations implemented. Ten color channel normalization procedures were implemented. Nine of those procedures were 
reference normalization factor (RN-factor) based methods that use the n = 93 normalization control probes assayed in every sample on the 450K chip 
for adjustment. Of the RN-factor based methods, three methods used the RN-factors from a single sample: the Illumina first sample normalization 
(IFsN), the best performing sample normalization, and the worst performing sample normalization. The remaining six RN-factor based procedures use 
aggregated RN-factors across different groups of samples, including the mean RN-factors for each plate of the experiment (plates 1–5 means) and the 
all sample mean normalization (asMN) that uses the mean RN-factors for all experimental samples. The remaining normalization, the lumi procedure, 
uses a quantile-based methodology instead of RN-factors.
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methodological categories: (1) reference normalization factor 
(RN-factor) based and (2) quantile based methods (Fig. 1). 
The first category included nine variations of RN-factor based 
procedures and the second category was represented by the lumi 
smooth quantile normalization.

RN-factor based normalizations utilize the mean values 
from the red and green normalization control probes included 
on the 450K chip as RN-factors in their adjustment (Fig. 2A). 
These RN-factors are used to compute two vectors of length n 
(RN-vectors), containing the ratio of each sample’s mean red and 
green control probe values to that of the RN-factor of the same 
color (Fig. 2B). Sample normalization occurs by multiplying the 
jth sample’s red and green signals by the corresponding elements 
from the red and green RN-vectors (Fig. 2C and Methods).

Among the RN-factor based normalizations, procedures 
differed by which control probe observations were used to 
calculate the RN-factors (Fig. 1). There were two groups of 
RN-factor procedures: (1) those using only the control probe 
values from a single sample (IFSN, best sample, worst sample) 
and (2) those using RN-factors aggregated across groups of 
samples (mean by each of 5 assay plates, ASMN). Figure 2 
shows each step of RN-factor based normalization for both a 
single sample (IFSN) and an aggregate procedure (ASMN).

Performance of the normalization procedures was evaluated 
by three criteria. First, we assessed the stability of RN-factor 

based normalizations when using RN-factors from samples of 
varying quality, or when using RN-factors aggregated across 
batches (i.e., assay plates) or an entire experiment (i.e., ASMN). 
The other two criteria included evaluation of repeatability of 
technical replicates and reduction in batch variation.

RN-factor based normalization stability
The majority of samples from our cohort proved to be 

of good quality with less than one percent of CpG sites with 
detection P values equal or greater than 0.05. However, nine 
of the 432 samples were considered of lower quality (>1% of 
CpG sites with detection P values ≥ 0.05). When we plotted the 
signal intensity of normalization control probe against quality 
of methylation calls (measured by number of detectable CpG 
sites), we found that samples with low red and green control 
signals also had lower quality methylation calls (Fig. 3). The 
correlation between control probe signal intensity and number 
of detectable CpG sites was 0.76 (P < 0.0005) for both red and 
green signals. If according to the Illumina IFSN algorithm 
(Fig. 2) the first sample on which the entire experiment is 
normalized happens to be one of low quality, the overall results 
and interpretation of the data may be negatively affected. Thus, 
ASMN was developed to increase normalization stability and 
robustness by non-arbitrarily drawing on observations from all 
Illumina internal controls and study samples (described in detail 
in Methods).

Figure 2. Reference normalization factor (RN-factor) based color channel normalization for the 450K methylation array. (A) The 450K chip includes  
n = 93 normalization control probes in both assay colors (red and green). The mean values of these sites are used to create RN-factors for normalizing 
both color channels over all samples (i.e., an experiment). The Illumina first sample normalization (IFsN) method uses the first sample’s mean red and 
green control probes as RN-factors ( .,1R  and .,1G ). The all sample mean normalization (asMN) method instead uses the mean read and green control 
probes taken across all control sites and all samples in a given experiment ( .,.R and .,.G ) as RN-factors. (B) a set of sample-wise normalization values, 
taken as the ratio of the RN-factor to each sample’s mean control probe values, is then computed. This results in a vector of length n normalization values 
for each color channel (R-RNV and G-RNV). (C) color channel normalization of sample data occurs by multiplying the each of the jth sample’s red and 
green signals by the jth normalization value from the corresponding RN-vector (where j = 1,2,…, n).
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Although we observed a positive association between control 
probe signal intensity and number of detectable CpG sites, this 
relationship appeared to exhibit a threshold effect (Fig. 3). Samples 
with fewer numbers of detectable CpG sites also had lower mean 
red and green control probe values, but increases in probe signal 
intensities above 2000 for red and 3000 for green did not appear 
to contribute to additional gains in CpG detection. While both 
the number of detectable CpG sites and the mean control probe 
signal intensity provide information regarding assay quality, only 
the former was a measure designed for this purpose. This makes 
it difficult to distinguish what constitutes a “better” sample or a 
“better” mean control probe value from those above the control 
signal threshold. We implemented the ASMN procedure to draw 
from the central tendency of this distribution rather than the tail, 
since we did not have convincing evidence to prefer higher mean 
control probe values above the threshold. Further, drawing from 
the center of this distribution made the ASMN more stable and 
less susceptible to variation in sample quality. To confirm that 
the mean was an appropriate measure of central tendency, we 
also performed the normalization using median RN-factors, but 
obtained similar results (data not shown).

We found little available rationale, including information in 
the Illumina reference manual, to support the preferential use 
of control probe data from the first sample over other samples 
beyond convenience.15 The IFSN approach carries an unstated 
assumption: the control probe values from any sample should 
perform equally well at reducing color bias and batch variation. 
This is not always the case, for instance Figure 4A shows a broad 
range of variability in the normalization control values among 
432 samples analyzed in this study. Furthermore, this variability 
also suggests that the particular sample used for normalization 
may affect the normalization quality of all samples. After 
performing normalization, RN-factor based methods bring all 

data observations to the same scale. Figure 4B illustrates this effect 
by showing that, after normalization, the previously dispersed 
normalization control values (Fig. 4A) become standardized to 
the values of the red and green RN-factors.

In Figure 5, we compared the normalized βs given an 
unadjusted β of 0.10 for all samples normalizing either on the 
lowest or highest quality sample. In general, normalization using 
the poorest quality sample (sample 411 in this data set) yielded 
much lower methylation βs. Further, normalization using the 
poor quality samples led to much larger variability in βs (Fig. 6; 
Table 1), particularly at extreme methylation values. Table 1 
shows that when we normalize using a high quality sample (e.g., 
sample 355), or if we normalize over a summary measure (mean 
over one plate or all samples), the βs do not change drastically 
after normalization and remain in the high, medium, and 
low range. However, when we normalize over the low quality 
sample, all three βs (low, medium, and high) decreased and the 
normalized value for high βs became much lower (~0.6 vs. ~0.9). 
These results could bias downstream analyses as the power to 
detect differences in methylation would be lessened, highlighting 
the importance of choosing a reliable normalization procedure 
based on high quality samples.

Repeatability and batch variability
When examining repeatability of replicates, we assessed 

the reduction in root mean squared error (root-MSE) between 
replicates by each normalization procedure (Table 2). All 
RN-factor based color channel normalization procedures 
resulted in lower mean root-MSE between replicates. The 
greatest reduction was a decrease of 10.83%, occurring with 
normalization using the RN-factors of the best performing sample 
in the experiment (sample 355 here). Those normalizations that 
used an aggregate RN-factor, such as the ASMN and the single 
plate-mean normalizations, each elicited similar reductions 

Table 1. Reference normalization factors and methylation (βs) for a single sample by normalization procedure

Reference  
normalization factors

Calculated βs (Infinium I) Calculated βs (Infinium II, red)

Red Green high Medium Low high Medium Low

Plate 1 3878.3 5116.5 0.907 0.455 0.073 0.911 0.468 0.076

Plate 2 4254.6 5408.0 0.909 0.456 0.073 0.910 0.460 0.074

Plate 3 4145.7 5271.2 0.908 0.456 0.073 0.910 0.460 0.074

Plate 4 4720.0 5680.8 0.910 0.457 0.073 0.907 0.447 0.070

Plate 5 5041.4 5913.0 0.911 0.457 0.073 0.906 0.441 0.069

asMN 4337.6 5429.6 0.909 0.456 0.073 0.909 0.456 0.073

IFsN 3633.0 4486.0 0.906 0.455 0.072 0.905 0.451 0.072

sample 355 5480.5 6875.5 0.913 0.458 0.073 0.913 0.458 0.073

sample 411 168.5 271.6 0.627 0.318 0.050 0.684 0.375 0.064

Red and green reference normalization factors (RN-factors) were calculated using the mean signals of the 93 normalization controls (a and T signals for red 
factor and c and G signals for the green factor) over plate 1, 2, 3, 4, or 5, over all samples on all plates, using the first sample (sample 1, IFsN), a high quality 
sample (most cpG sites detected, sample 355), or a low quality sample (least cpG sites detected, sample 411). calculated methylation values (βs) were for 
one sample whose mean normalization signals were equal to the all plates values (4337.6 and 5429.6 for red and green, respectively and with fixed signal a’s 
and signal β’s corresponding to high, medium, and low βs. signal a’s were 400, 3000, and 5000 and signal β’s were 5000, 2600, and 400 for high, medium, 
and low βs, respectively. asMN, all sample mean normalization; IFsN, Illumina first sample normalization; sample 355, sample with the most detectable 
sites (high quality); sample 411, sample with the least detectable sites (low quality).
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in root-MSE between replicates, all producing approximately 
a 10% reduction compared with un-normalized data. Of the 
color channel normalizations evaluated, the lumi normalization 
performed worst, actually slightly increasing mean replicate 
root-MSE (0.58%). However, both data sets that utilized an 
additional normalization technique for Infinium chemistry 
adjustment (BMIQ) saw increases in root-MSE compared with 
un-normalized. While this effect was relatively small for the ASMN 
combined with BMIQ normalization (a 1.21% increase), the lumi 
normalization followed by BMIQ produced a sizeable increase 
in mean replicate root-MSE (11.96%), indicating a decrease in 
repeatability. The changes in correlation observed for each of the 
normalization procedures relative to un-normalized results largely 
followed similar trends as those observed for root-MSE (Table 2). 
However, due to the bounded nature of the correlation coefficient, 
the magnitude of the effect was not as large.

Visual assessment of batch variability also identified important 
differences between normalization procedures (Fig. 7). Color 
channel normalization is expected to increase comparability 
of mean chip values and decrease batch variability over 
un-normalized βs, as seen in Figure 7A. Lumi smooth quantile 
normalization (Fig. 7B) appears to retain many of the extreme 
points and batch trends observed in the raw βs, as does using 
the worst performing sample’s RN-factor values, which also 
decreases the real scale of the β distribution (Fig. 7C). The box 

plots of mean sample β using normalization by ASMN, shown 
in Figure 7D, demonstrate a reduction in the number of outlier 
samples and batch-related variability.

In the site-level analysis of batch-associated variability, the “raw” 
un-normalized βs showed a relatively high percentage of CpG sites 
that were associated with the chip batch (12.8%) (Fig. 8) compared 
with other normalizations. Other mean RN-factor based color 
channel normalization procedures, including ASMN and each of 
the plate mean RN-factor normalization procedures showed fewer 
batch associated sites than raw βs and the percentage of sites were 
largely consistent across these procedures. When using only one 
sample’s control probe values, sample quality appeared to influence 
the amount of batch variability across the experiment. For instance, 
the best performing sample (by fewest number of non-detectable 
CpG sites) and a well-performing first-experiment sample used in 
the IFSN, both had percentages of batch-association comparable 
with aggregate RN-factor based procedures. However, the worst 
performing sample had the highest level of batch association. The 
lumi procedure also showed a reduction in the percentage of batch-
associated sites compared with un-normalized results, having even 
a slightly lower percentage than the aggregate RN-factor based 
procedures. Additionally, the number of batch- associated sites 
was further reduced for both the lumi and ASMN when they 
had been followed by the BMIQ adjustment for Infinium assay  
chemistry.

Figure 3. Plot of mean red (A) and green (B) signal intensity of normalization control probes (n = 93) by number of detected cpG sites in the 450K array 
sample data (n = 432). For both color channels, samples with lower intensity readings in their normalization control probes tended to have more poor 
performing cpG sites in their samples.
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Finally, the ASMN normalization procedure has been 
compiled into an R package that will be freely available in an 
open-source distribution in the bioconductor repository for 
bioinformatics software (http://www.bioconductor.org).

Discussion

In this study, we implemented and evaluated the performance 
of 10 variations of color channel normalization for Illumina 
450K methylation data from a large epidemiologic study. In 
addition to using two common color channel normalization 
procedures (IFSN and lumi), we also implemented our preferred 
new ASMN normalization procedure, and several additional 
strategies to evaluate the range of performance that could be 
achieved with RN-factor based procedures. We specifically 
examined the ability of these normalization procedures to 
reduce major sources of technical variability by assessment of 
(1) batch effects and (2) performance of technical replicates 
included in the experiment. We found that the ASMN procedure 
outperformed the Illumina recommended IFSN algorithm, 
and further, that ASMN consistently performed well while the 
performance of IFSN varied depending on sample quality. We 
observed comparable performance between normalizations using 

the RN-factors from the best performing sample and ASMN, 
while the latter had the added benefit of not relying on data 
mining. We also found that the ASMN procedure was better 
at increasing repeatability between technical replicates than 
the commonly used lumi approach and had similar benefits for 
reducing batch effects. Lastly, we confirmed that the advantages 
of ASMN normalization compared with lumi were retained even 
after adjustment for differences in Infinium chemistry using 
the popular BMIQ algorithm. These findings suggest that the 
ASMN procedure is an improvement over existing strategies for 
color channel normalization, especially for large epidemiologic 
studies. Thus, its implementation in conjunction with other 
data cleaning steps in any 450K methylation data pipeline is 
warranted.

Improved performance in repeatability and reduction of batch 
effects were observed for ASMN when compared with the IFSN 
procedure recommended by Illumina. While some of these gains 
in performance were relatively small in scale, as when comparing 
the number of batch associated CpG’s found for each procedure, 
they were consistent across all performance measures. Further, 
our parallel assessment of normalization by using the RN-factor 
values for both the best and worst performing samples showed 
the range of possible performance that could have been garnered 

Figure 4. Mean control probe color signal intensity before and after normalization. (A) Distribution of mean green and red normalization controls  
(93 controls per signal color per sample) as included in the 450K chip over 432 DNa samples. each point, red triangle or green square, represents the 
average of the normalization controls for that signal color per sample prior to implementation of color channel normalization. (B) Following adjustment 
using a reference normalization factor (RN-factor) based normalization, the average normalization controls for all samples are “forced” to be the same 
level, making observations across samples comparable. here, asMN normalization was performed which uses the mean red and green signal for all 
samples for adjustment.
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with the IFSN strategy. While the best sample’s performance 
was largely comparable with the ASMN, the worst sample’s 
performance was drastically worse, even seeming to introduce 
batch variability compared with un-normalized results (Fig. 8). 
This range of performance demonstrated that while some 
samples may perform satisfactorily when used in normalization, 
others may introduce bias to results. The likelihood of a poor 
performing normalization by the IFSN strategy is essentially a 
random draw from the range of sample qualities included in a 
given experiment. The ASMN procedure provides a convenient 
and more reliable alternative, since its performance is stable over 
a given experiment. In addition, the use of ASMN instead of 
normalization by RN-factors from the best performing sample 
provides a robust methodology that does not rely on prior access 
to data or data mining.

Comparison of the ASMN procedure to the lumi 
normalization showed that ASMN had increased repeatability 
across all metrics evaluated. In fact, lumi often performed 
only marginally better than using raw un-normalized results 
(Table 2). While lumi did not effectively improve repeatability, 
it did provide substantial reductions in batch effects, 
outperforming both ASMN and the best sample RN-factor 
normalizations in this regard. One possible explanation for 
this inconsistent performance may be over-fitting of the lumi 
algorithm, which aggressively coerces the distribution of 
normalization targets to have identical quantiles as the reference 
distribution. In turn, this may reduce the number of possible 
methylation values and minimize batch effects, even while not 
addressing the repeatability issues. Further, since the loss in 
batch variability does not co-occur with gains in repeatability, 

the apparent benefits of this approach may actually come at the 
cost of artificially reduced biological variability.

When we examined the performance of the lumi and ASMN 
procedures followed by adjustment for differences in Infinium 
chemistry using the BMIQ algorithm, we continued to observe 
benefits of using ASMN rather than lumi. While in general both 
lumi + BMIQ and ASMN + BMIQ performed well at reducing 
batch variability, neither of these combined strategies saw 
improved performance of technical replicates compared with 
data sets receiving only color channel normalization. Again, the 
lumi + BMIQ data set exhibited the same trend seen in the 
lumi color normalization alone: much lower batch variability 
with increased variability between technical replicates. As such, 
it seems likely that the issue of the lumi algorithm over-fitting 
is retained even when followed by BMIQ normalization. The 
ASMN + BMIQ data set, like the data set receiving the ASMN 
normalization alone, had consistent performance in reducing 
technical variability. While some of the gain in repeatability 
between replicates afforded by the ASMN was lessened with 
addition of BMIQ, it was previously demonstrated that 
adjustment for Infinium chemistry is needed9,11,13 and, thus, 
BMIQ has to remain in the 450K data processing pipeline.

It is important to clarify that the assessment we present 
here is focused on performance of color channel normalization 
in particular, and isn’t a comprehensive evaluation of all the 
processing steps needed prior to analysis of biological effects 
from 450K array data. Several additional data processing steps 
have been suggested in the literature and are freely available 
as R packages, including filtering out SNP-associated probes 
included in the 450K assay and adjusting for the Infinium I 

Table 2. Repeatability of technical replicates by improvement of root mean squared error (root-Mse) and mean spearman correlation (R2) compared for 
un-normalized results

Normalization 
method

% Change in 
Root-MSE

R2 for replicates % Change in R2

asMN -10.43 0.970 0.339

Plate 1 -10.72 0.970 0.339

Plate 2 -10.55 0.970 0.338

Plate 3 -10.50 0.970 0.338

Plate 4 -10.17 0.970 0.343

Plate 5 -10.00 0.970 0.348

IFsN -9.91 0.970 0.342

sample 411 -5.59 0.965 -0.115

sample 355 -10.83 0.970 0.344

lumi 0.58 0.968 0.151

asMN + BMIQ 1.21 0.965 -0.176

lumi + BMIQ 11.96 0.962 -0.428

Percentage change in root-Mse and R2 between 15 sets of replicate pairs and un-normalized results by the ten normalization procedures. The un-normal-
ized root-Mse had a baseline value of 0.0499 methylation units (βs) and the un-normalized R2 was 0.9664. For root-Mse calculations, a pair of replicates 
was randomly chosen from two replicates sets that had more than two total samples and consistently evaluated across each normalization method. 
Normalization procedures included: all sample mean normalization (asMN), normalization by reference normalization factors (RN-factors) taken as the 
mean control probe values for each of the plates (plate 1–plate 5) run, Illumina first sample normalization (IFsN), normalization by the worst performing 
sample’s RN-factors (sample 411) and the best performing sample’s RN-factors (sample 355), lumi smooth quantile normalization, and both the asMN and 
lumi normalization followed by β-mixture quantile normalization (BMIQ).
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and II chemistries.9,10,13 To confirm that improved performance 
would be retained in the context of a full pipeline, we also 
performed SNP-filtration prior to ASMN normalization and 
observed similar gains (data not shown). Our results indicate 
that color channel normalization should indeed be performed in 
addition to SNP-filtering and Infinium chemistry adjustment 
(BMIQ), and should be included in any robust Infinium data 
processing pipeline.

While other studies have examined normalization strategies 
for 450K data, to date they have focused on reducing differences 
between the Infinium I and II chemistries, and have been 
under-powered to evaluate the batch effects that are likely to 
occur in large association studies.9,11,12 A main advantage of 
our approach was a large sample size and inclusion of many 
technical replicates for rigorous evaluation of normalization 
performance. Only one other evaluation has been published 
to date examining normalization of data from the 450K assay 
for anything approaching a population study.14 This study 
based on 85 samples, found that a pipeline that included 
lumi color adjustment, followed by BMIQ performed the 
best at reducing batch variability and increasing repeatability. 
However, Marabita et al. mostly directed their comparison to 
performance between Infinium I and II chemistry adjustment. 
Further, they did not consider an option we propose here as 

ASMN, which we tested alongside the lumi + BMIQ procedure 
(that they preferred). Our study’s capacity to detect true 
batch effects was much larger than the Marabita study, which 
examined only 85 samples analyzed on eight BeadChips. The 
numerous BeadChips and plates analyzed in our study (n

samples
 

= 432, n
chips

 = 36, n
plates

 = 5) are more representative of the scale 
of batch effects that would be encountered in large population 
or case-control studies. Also, Marabita et al. only examined 
repeatability with n = 16 total replicates (n = 8 pairs) while our 
assessment included more than double that number of replicates 
(n = 38 from n = 15 samples).

In summary, we implemented the most comprehensive 
comparative evaluation of color channel normalization 
procedures for the 450K assay to date. The large sample size and 
the many technical replicates included in the analysis allowed for 
careful assessment of sources of technical variability, including 
those that are likely to be unique to large epidemiologic studies. 
Our results show that the ASMN normalization procedure that 
we introduced is an excellent alternative to the two leading 
color channel normalization strategies, Illumina’s IFSN and 
lumi. ASMN reduced technical variability compared with the 
IFSN procedure and did not encounter the performance trade-
offs of the lumi approach. As ASMN relies on a predefined 
measure of central tendency among control values, it is a stable 
and robust approach to normalization. Further, the ASMN 
procedure yielded reductions in technical variability beyond 
normalization for Infinium chemistry type alone by BMIQ. 

Figure  6. average percent change of methylation values, βs, after 
normalization by best and worth performing samples. Mean percent 
change in βs, values ranging from 0.1 to 0.9, based on normalization by 
the lowest quality sample (largest amount of cpG sites with P < 0.05) and 
the highest quality sample (least amount of cpG sites with P < 0.05) over 
all samples (n = 432). While normalization by the highest quality sample 
changed the βs only slightly (<10% on average), normalization by the 
lowest quality sample tended to change the low and high methylation 
βs substantially (>10% on average).

Figure 5. Plot of normalized DNa methylation (βs) given an unadjusted 
β of 0.1 (signal a = 5000 and signal B = 570) for all 432 samples. Open 
circles represent data normalized using the sample with the least detect-
able sites (sample 411, the lowest quality sample). Filled circles were nor-
malized using the sample with the most detectable sites (sample 355, 
the highest quality sample).
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These findings suggest that, especially for large epidemiologic 
studies, the ASMN color channel normalization is a valuable 
component to be included in a 450K methylation data pipeline.

Materials and Methods

Samples
DNA was isolated from a convenience set of blood clots 

from 408 healthy children participating in a longitudinal birth 
cohort study, using QIAamp DNA blood kits from Qiagen 
according to the manufacturer’s protocol. Following isolation, 
all samples were checked for DNA quantity and quality by 
Nanodrop 2000 spectrophotometer. Samples were retained if 
they produced high yield and good DNA quality (as assessed by 
260/280 ratio exceeding 1.6) and concentrations were adjusted 
to 50 ng/ml. DNA aliquots of 1 mg were bisulfite converted 
using Zymo Bisulfite conversion Kits (Zymo Research). Study 
protocols were approved by the University of California, 
Berkeley Committee for Protection of Human Subjects

Illumina Infinium HumanMethylation450 DNA 
methylation assay

DNA samples were whole genome amplified, enzymatically 
fragmented, purified, and applied to the 450K BeadChips 
according to the Illumina methylation protocol.6,16 BeadChips 
were processed with robotics and analyzed using the Illumina 
Hi-Scan system. Each 450K BeadChip can fit n = 12 samples 
in total, and these chips are usually run combined onto plates in 
sets of 8, for a batch of n = 96 samples. To accommodate all of 
the samples analyzed in this experiment, 36 BeadChips were run 
across 5 plates. BeadChips included on the same plate (up to n = 
8 BeadChips per plate) were analyzed simultaneously, and time 
between plate runs was approximately one week using the same 
batch of all reagents and chips.

Data extraction
Sample data were extracted using Illumina GenomeStudio 

software (version XXV2011.1, Methylation Module 1.9) 
methylation module. This provides raw intensities for both red 
and green color channels, detection P values as a measure of assay 
performance, and βs calculated from raw signals for all samples 
at all 485 577 assayed probes. Data cleaning performed prior 
to evaluation of different normalization procedures included 
background correction of raw signal intensities according to 

Figure 7. Box plots of sample mean methylation by 450K chip batch and normalization methods. Box plots of mean per-sample methylation (β) for all 
sites interrogated on the 450K array (n = 485 512) by 450K chip batch for color channel normalization methods. Plots are shown for (A) un-normalized 
results and three different normalization methods, (B) lumi smooth quantile normalization, (C) normalization using the worst performing sample’s refer-
ence normalization factor values (sample 411), and (D) using the all sample mean normalization (asMN) method. each chip assays 12 samples, so every 
box plot contains 12 observations in total.
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Illumina recommendations using GenomeStudio software. The 
background is determined as the lowest 5th percentile of the 600 
negative controls included in the assay and was subtracted from 
the probe intensities. Also, the n = 65 SNP probes noted in the 
Illumina manual were filtered out, leaving 485 512 CpG sites for 
analysis.

Simultaneous to sample data extraction, control probe data 
extraction was also performed using the GenomeStudio software. 
This additional matrix contains raw signal observations for all of 
the probes included as controls in the design of the 450K assay. 
Such control values include negative controls (for background 
subtraction), extension controls, staining controls, bisulfite 
controls, and n = 93 normalization control probes among 
others. The normalization control probe pairs are targeted to 
non-variable regions of stable housekeeping genes and are the 
observations used to calculate the RN-factors used RN-factor 
based normalization procedures (Fig. 2).

Quality assurance/quality control (QA/QC)
Of the samples selected for analysis, 14 samples were randomly 

chosen to be included as technical replicates. Replicates were 
designed to maximize the capacity to detect multiple forms of 
bias across the experiment. As such, 3 pairs of samples were 
included as intra-chip replicates, 6 pairs were included as intra-
plate replicates, 4 pairs were DNA isolation replicates, and 1 
sample was an inter-plate replicate run 7 times across all plates of 
the experiment. Furthermore, one internal control sample (DNA 
from a Jurkat cell-line) was run on each sample plate, replicated 
5 times in total. Including the Jurkat DNA, 15 sets of replicates 
were included throughout the experiment, comprising n = 38 
QA/QC samples. The location of samples on assay wells for each 
of the Illumina BeadChips was randomized.

In addition to replicates, the Illumina GenomeStudio 
software provides an internal measure of assay quality for each 
CpG site interrogated: a detection P value. This value represents 
the chance that the signals produced from a given site were 
not distinguishable from background. Thus, a small detection  
P value would indicate that the fluorescent signals at a particular 
CpG site were likely above background levels. Illumina suggests 
using a detection P-value cutoff of 0.05 above which a CpG site 
should be excluded from analysis.

Color channel batch normalization procedures
Including all QA/QC samples, a total of n = 432 samples 

were assayed. We refer to this as the total samples included in 
our “experiment.” Further, we define “batch” effects as occurring 
at two different levels: (1) the BeadChip level (which includes 
observations from n = 12 samples) and, (2) the plate level (which 
includes n = 8 BeadChips and n = 96 samples). Our experiment 
includes 36 BeadChip batches and 5 plate batches. Unless 
otherwise specified, all batch analysis was conducted at the 
BeadChip level.

To evaluate the performance of different procedures adjusting 
for color channel bias across batches, we implemented 10 different 
normalization procedures to background subtracted signals, 
creating a total of ten different data sets. These 10 procedures fell 
into two methodological categories: (1) reference normalization 
factor (RN-factor) based and (2) quantile based methods (Fig. 1). 
The nine RN-factor based procedures utilize the values of the 
n = 93 normalization control probe to construct RN-factors 
(Fig. 2) and differ by which observations are used to calculate 
RN-factors. There were two groups of RN-factor based methods: 
(1) those using only the RN-factors from a single sample and  
(2) those using aggregated RN-factors (Fig. 1).

Figure 8. Percent of 450K array cpG sites associated with chip batch (P < 0.01) shown by normalization method. Normalization methods include: all 
sample mean normalization (asMN), normalization by reference normalization factors (RN-factors) taken as the mean control probe values for each of 
the plates (1–5) run, Illumina first sample normalization (IFsN), normalization by the worst performing sample’s RN-factors (sample 411) and the best 
performing sample’s RN-factors (sample 355), lumi smooth quantile normalization, raw un-normalized results, and both the asMN and lumi normaliza-
tion followed by β-mixture quantile normalization (BMIQ). Batch association was evaluated by aNOVa for each of the n = 485 512 cpG sites interrogated.
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Each of the 10 color channel normalization procedures are 
described below:

1) The Illumina first sample normalization (IFSN) is the 
standard color channel normalization recommended by Illumina. 
This procedure uses the mean of the first sample’s normalization 
control probe values (both red and green) to calculate the 
RN-factors. 

2) Another single-sample RN-factor normalization was 
performed: one using the RN-factors for the best performing 
sample in the experiment (sample number 355). As described 
in QA/QC above, the best performing samples was determined 
by having the highest number of CpG sites meeting a detection 
P-value threshold less than 0.05.

3) A single-sample RN-factor normalization was also 
performed using the RN-factors for the worst performing sample 
in the experiment (sample number 411). The worst performing 
sample in the experiment was determined by having the least 
number of CpG sites meeting a detection P-value threshold less 
than 0.05.

4) The all sample mean normalization (ASMN) strategy that 
we developed uses the means of the RN-factors of all samples in 
the experiment (in this case n = 432) as the RN-factors.

5–9) Beyond calculating the RN-factors as the mean over 
all samples in the experiment, we also performed normalization 
by averaging over different sub-groups within the experiment, 
namely each of the 5 plate-batches in which the experiment was 
run. RN-factors calculated as the mean RN-factors by each plate 
created 5 different mean-plate RN-factors and 5 output data sets. 
These procedures essentially set 1 plate batch as the baseline to 
which all other batches are normalized.

10) Lastly, one non-RN-factor based color channel 
normalization, the lumi smooth quantile normalization 

procedure, was also implemented. This approach involves local 
polynomial smoothing followed by an interpolation step. The 
procedure assumes that the distributions of data within each 
color channels are identical and coerces the distribution of each 
target color channel to have identical quantiles to the reference 
distribution.

To further confirm the stability of the ASMN procedure, an 
additional data set was generated which removed n = 16 667 CpG 
sites that potentially include common (minor allele frequency  
> 5%) SNPs prior to ASMN normalization. SNP list was 
obtained using the HapMap project population most comparable 
to our cohort.17 All measures of normalization performance were 
retained following removal of possible SNP-associated CpGs 
(data not shown).

Adjustment for Infinium chemistry
In addition to the ten data sets created by implementing 

different color channel batch normalization strategies, we also 
implemented an adjustment procedure (BMIQ) to account for 
the systematically different performances of the Infinium I and 
II chemistries to two of our color channel normalized data sets. 
We applied BMIQ to the ASMN and lumi normalized data sets 
(numbers 2 and 6 above) to evaluate how reduction of batch 
variability would be impacted by adding this needed correction 
for assay chemistry. The BMIQ normalization procedure is a 
model-based strategy that applies a three-state β mixture model 
to assign methylation states, followed by quantile normalization 
using the parameters of these β distributions.13

Statistical analysis
After extraction of raw values was conducted using the Illumina 

Genome Studio software, all subsequent statistical analysis was 
performed using the R statistical computing software. The lumi 
smooth quantile normalization was implemented using the lumi 

Table 3. Mean standard deviation (sD) and coefficient of variation (cV) between 15 sets of replicates by type of Illumina infinium chemistry (Inf I and InfII) 
and different normalization procedures

Mean SD, InfI (95% CI) Mean SD, InfI (95% CI) Mean CV, InfI (95% CI) Mean CV, InfI (95% CI)

asMN 0.0135 (0.0019, 0.0478) 0.0226 (0.0058, 0.0694) 19.0475 (0.4751, 71.5218) 7.1307 (1.0838, 25.2767)

Plate 1 0.0135 (0.0019, 0.0476) 0.0225 (0.006, 0.0694) 19.0033 (0.4618, 71.5156) 7.078 (1.0461, 25.1793)

Plate 2 0.0135 (0.0019, 0.0478) 0.0226 (0.0059, 0.0693) 19.0341 (0.4713, 71.5202) 7.1121 (1.0721, 25.254)

Plate 3 0.0135 (0.0019, 0.0478) 0.0226 (0.0059, 0.0695) 19.0347 (0.4721, 71.5195) 7.1174 (1.0725, 25.2498)

Plate 4 0.0134 (0.0018, 0.0479) 0.0227 (0.0057, 0.0695) 19.0808 (0.4852, 71.534) 7.1717 (1.1124, 25.3501)

Plate 5 0.0134 (0.0018, 0.048) 0.0227 (0.0056, 0.0695) 19.1025 (0.4922, 71.5366) 7.1975 (1.1308, 25.3863)

IFsN 0.0135 (0.0018, 0.0479) 0.0228 (0.0058, 0.0705) 19.0663 (0.4873, 71.5252) 7.1929 (1.0992, 25.2778)

sample 411 0.0147 (0.0019, 0.0493) 0.026 (0.0061, 0.0772) 19.4851 (1.5131, 71.5281) 9.2926 (1.5752, 27.0743)

sample 355 0.0135 (0.0019, 0.0478) 0.0224 (0.0058, 0.0684) 19.0388 (0.4665, 71.5322) 7.0819 (1.0766, 25.3046)

lumi 0.0134 (0.0017, 0.0529) 0.0251 (0.0056, 0.0839) 19.6198 (0.4354, 75.3505) 7.6002 (1.031, 25.1459)

Raw 0.0136 (0.0018, 0.0518) 0.0259 (0.0063, 0.0837) 18.6096 (0.4855, 71.2258) 7.7368 (1.1908, 25.0344)

asMN + BMIQ 0.0135 (0.0019, 0.0478) 0.0241 (0.002, 0.083) 20.5427 (0.4805, 78.8597) 13.2042 (0.738, 56.3085)

lumi + BMIQ 0.0134 (0.0017, 0.0529) 0.0266 (0.0018, 0.0973) 19.6198 (0.4354, 75.3505) 13.2997 (0.7296, 54.9395)

all sample mean normalization (asMN), reference normalization factors (RN-factors) taken as the mean control probe values for each of the plates (plate 
1–plate 5) run, Illumina first sample normalization (IFsN), normalization by the worst performing sample’s RN-factors (sample 411) and the best performing 
sample’s RN-factors (sample 355), lumi smooth quantile normalization, un-normalized results (raw), and both the asMN and lumi normalization followed 
by b-mixture quantile normalization (BMIQ).
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package.8 The BMIQ algorithm was implemented using the 
freely available code cited in Teschendorff et al.13

Repeatability was assessed by comparison of the performance 
of the 15 sets of technical replicates distributed broadly across all 
of the chips run for the experiment. We take our use of the term 
“repeatability” from the Wild, Vineis, and Garte (2008) text, 
meaning the “ability to yield the same results… each time the 
test is conducted in the same laboratory.”18 Standard deviations 
and coefficients of variation were calculated for all CpG sites 
run on the Infinium assay (n = 485 512 CpG sites total). The 
means of these measures, taken for both Infinium I and II assays 
separately, were taken across all replicate sets for each of the color 
channel normalizations conducted as a measure of procedure 
stability (Table 3).

Further, the root mean squared error (root-MSE) was computed 
between all sets of technical replicates for each of the normalization 
procedures evaluated. This provided an estimate of technical error 
in the same scale as the measurement taken, in this case on the zero-
to-one scale of methylation βs. For raw, un-normalized β values, 
the mean root-MSE among all 15 sets of technical replicates was 
0.0499 β units. Using this value as a reference, we compared the 
mean replicate root-MSE across each of the different normalization 
procedures to this standard expressed as a percentage change from 
the mean root-MSE for the un-normalized data set. Spearman 
correlation coefficients were also calculated for all replicates sets 
and averaged by normalization procedure as an additional measure 
of replicate comparability.

Batch variability was also evaluated for each of the normalization 
procedures implemented. Box plots of mean per-sample β for all 

sites interrogated on the 450K array were constructed to visualize 
trends in means by batch across the entire experiment. Plots are 
shown for three different color channel normalization procedures 
(lumi, worst sample RN-factor, and ASMN) by the Illumina 
chip batch on which they were analyzed (Fig. 7). Beyond visual 
assessment of batch trends, a site-level analysis of batch-associated 
variability was conducted for each of the normalizations utilized. 
Batch variability across chips was evaluated by ANOVA for each 
of the CpG sites. A site was considered “batch-associated” if the 
P value associated with effect of analysis chip was less than or 
equal to 0.01. Levels of batch association were compared between 
each normalization procedure by taking the number of CpG sites 
meting the P ≤ 0.01 criteria for batch association as a percentage 
of total sites on the 450K assay.
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