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Estimating Fine Particulate Matter Component
Concentrations and Size Distributions Using Satellite-
Retrieved Fractional Aerosol Optical Depth: Part 1—
Method Development

Yang Liu and Petros Koutrakis
School of Public Health, Harvard University, Boston, MA

Ralph Kahn
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

ABSTRACT
We develop a method that uses both the total column
aerosol optical depth (AOD) and the fractional AOD
values for different aerosol types, derived from Mul-
tiangle Imaging SpectroRadiometer (MISR) aerosol data,
to estimate ground-level concentrations of fine partic-
ulate matter (PM2.5) mass and its major constituents in
eastern and western United States. Compared with pre-
vious research on linking column AOD with ground-
level PM2.5, this method treats various MISR aerosol
components as individual predictor variables. There-
fore, the contributions of different particle types to
PM2.5 concentrations can be estimated. When AOD is
greater than 0.15, MISR is able to distinguish dust from
non-dust particles with an uncertainty level of approx-
imately 4%, and light-absorbing from non-light-absorb-
ing particles with an uncertainty level of approximately
20%. Further analysis shows that MISR Version 17 aero-
sol microphysical properties have good sensitivity and
internal consistency among different mixture classes.
The retrieval uncertainty of individual fractional AODs
ranges between 5 and 11% in the eastern United States,
and between 11 and 31% in the west for non-dust
aerosol components. These results provide confidence
that the fractional AOD models with their inherent
flexibility can make more accurate predictions of the
concentrations of PM2.5 and its constituents.

INTRODUCTION
Epidemiologic studies have demonstrated a consistent
positive association between ambient fine particle
(PM2.5, particulate matter �2.5 �m in aerodynamic di-
ameter) pollution levels and adverse health effects such
as increased mortality and morbidity, particularly
among those with chronic respiratory and cardiovascu-
lar diseases.1 This association has been demonstrated
for a wide range of concentration levels in various re-
gions of the world, without an apparent safety thresh-
old.2 Urban aerosol is a complex mixture of particles
primarily composed of sulfate (SO4

2�), nitrates (NO3
�),

ammonium (NH4
�), elemental carbon (EC), organic

compounds (OC), and various metals.3 The relative
contributions of these species vary substantially by lo-
cation and season. Although health effects have been
related to mass concentrations, it is not likely that mass
is the only factor regulating particle toxicity. Limited
animal studies indicate that hematologic changes and
lung inflammation may be related to certain chemical
components of PM2.5.4,5 Since early 2000, the U.S. En-
vironmental Protection Agency (EPA) has established
the PM2.5 Speciation and Trends Network (STN) to pro-
vide data on PM2.5 components, to identify sources,
develop emission control implementation plans, and
support ongoing health-effects studies.6 Although cur-
rently there are approximately 200 P.M2.5 speciation
monitoring sites throughout the United States, STN is
still too sparse to provide full data support for large-
scale population exposure studies.

In December 1999, the National Aeronautics and
Space Administration (NASA) launched Terra, the first
of its Earth Observing System (EOS) satellites. The main
mission of Terra is to help us better understand the state
of the Earth and its atmosphere as well as the environ-
mental impacts of human activities.7 One of the instru-
ments aboard, the Multiangle Imaging SpectroRadiom-
eter (MISR), was designed to retrieve column aerosol
amounts and properties, even over complex land sur-
faces. In addition to making global measurements on
the Earth’s environment and climate, it provides the

IMPLICATIONS
Studying the health effects of specific PM2.5 constituents is
very important in shaping air quality standards and control
policies for PM2.5. However, such studies are difficult to
conduct due to the lack of reliable PM2.5 speciation expo-
sure estimates. This article presents a method that uses
satellite-retrieved column fractional AOD values for differ-
ent aerosol types, along with aerosol transport model re-
sults, to estimate ground-level concentrations and size dis-
tributions of PM2.5 and its major constituents. This method
can provide valuable information on the spatial character-
istics of PM2.5 constituents over large areas, and hence can
help in designing more efficient emission control policies.
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possibility for large-scale particle pollution monitoring
from space. MISR aerosol optical depth (AOD), a mea-
sure of column aerosol abundance, is sensitive to par-
ticles with diameters ranging from approximately 0.05
to 2.5 �m, which roughly corresponds to the size range
of PM2.5 and includes accumulation-mode dust and
pollution particles.8 In various modeling analyses,
MISR AOD has shown a significant association with
ground level PM2.5 concentrations.9–11

MISR measures the reflected sunlight from Earth in
four spectral bands (446, 558, 672, and 866 nm) at each
of the nine cameras pointed in the forward, nadir, and
aft directions along the flight path, with spatial resolu-
tion of up to 275 m/pixel. This unique multiangle de-
sign allows MISR to observe the atmosphere through
effective path lengths ranging from one to three, and
scattering angles from approximately 60° to 160° in mid
latitudes, which provides information on aerosol mi-
crophysical properties such as particle size distribution
and shape in addition to AOD. The MISR Standard
Aerosol Product reports total-column aerosol properties
at a spatial resolution of 17.6 km, about once per week
in mid latitudes. In developing the aerosol retrieval
approach, MISR pre-selects a set of climatologically
probable aerosol mixtures to represent aerosol types
globally. These mixtures consist of several individual
aerosol components that are defined by a size distribu-
tion, shape, complex index of refraction, and scale
height. The description of these components and the
mixtures they form is documented in the MISR Aerosol
Physical and Optical Properties (APOP) file and the
Aerosol Mixture file. As the MISR instrument and re-
trieval approach are relatively new, the integration of
new knowledge about real-world aerosol properties and
MISR algorithm performance leads to modifications of
retrieval algorithm and updates of the APOP and Aero-
sol Mixture files. MISR data are reprocessed periodically
to implement these changes, and a new version of data
is released. The various parameters included in the
MISR aerosol data product can have different maturity
levels. Some parameters can be validated more easily,
such as AOD, therefore they are more robust and have
reached a higher maturity level. Other parameters, such
as the retrieved aerosol microphysical properties, are
more difficult to validate, and are as yet at a lower
maturity level (see MISR aerosol data version informa-
tion at http://www.eosweb.larc.nasa.gov/PRODOCS/misr/
Version/pge9.html).

As a research instrument, MISR does not have near
real-time data processing capability, therefore is not
suitable for regulatory air quality monitoring. However,
its unique multiangle technique provides a richer aero-
sol dataset to study long-term spatial and temporal
trends of particle mass, composition, and other infor-
mation, compared with other spaceborne aerosol sen-
sors. The total AOD (called regional mean or best esti-
mate AOD in the MISR data product) used in previous
MISR aerosol related studies are in fact the average
optical depth of all successful mixtures.10–12 The AOD
value of each mixture as well as the corresponding
success flag (indicator of whether a mixture passes all

the selection criteria and is considered a good fit to the
observations) are all stored in the MISR data product.
To date, no work has been published on how to utilize
MISR-retrieved aerosol microphysical properties to help
identify ground-level PM2.5 size distribution and spe-
ciation. We developed a novel method that uses MISR-
retrieved aerosol microphysical properties to estimate
ground level mass concentrations and size distributions
of PM2.5 and its key constituents. This effort represents
the cutting edge of what is possible with current ver-
sions of the data products. We first describe the latest
MISR aerosol product (Version 17) for which over a year
of data was available at the time of this analysis. These
data include mid-visible wavelength (558 nm) AOD and
particle property information. In the Methods section,
we describe our four-step approach of estimating PM2.5

mass concentrations and size distributions using frac-
tional AODs, that is, the contribution of each MISR
aerosol component to total AOD. Given the lower ma-
turity level of MISR particle property information, we
briefly assessed the sensitivity of MISR data in distin-
guishing different aerosol components in this paper.
We defined a prevalence ratio of conflicting aerosol
mixtures to measure the consistency of MISR-retrieved
aerosol mixtures.

MISR-RETRIEVED AEROSOL MICROPHYSICAL
PROPERTIES
All the MISR data products are distributed through the
Atmospheric Science Data Center (ASDC) at NASA Lan-
gley Research Center (http://www.eosweb.larc.nasa.gov/
PRODOCS/misr/data.html). MISR retrieves aerosol prop-
erties by first assuming a set of aerosol mixtures in the
atmosphere. For each MISR observation at a given lo-
cation and time, top-of-atmosphere radiances for all the
mixtures are computed and compared with the MISR
observations to determine those mixtures that provide
good fits to the data, that is, the “successful mix-
tures.”13 The theoretical foundation of aerosol micro-
physical properties for earlier MISR aerosol product ver-
sions is described in detail elsewhere.14 Here we provide
the details related to the Version 17 data used in the
current paper and the case study presented in the com-
panion paper. Different versions of APOP files, which
have been used in various versions of MISR data prod-
ucts, can be obtained from ASDC. Eight aerosol compo-
nents from the (Version 19) APOP file are used for the
Version 17 MISR Aerosol Product (MIL2ASAE) (Table 1).
The naming convention of these components is gener-
ally particle shape (i.e., spheres, grains, or ellipsoids),
followed by a qualitative scattering property (i.e., non-
light-absorbing or light-absorbing), and followed by the
effective radius for a number-weighted log-normal dis-
tribution (e.g., 0.06 �m or 2.80 �m). Single scattering
albedo at 558 nm wavelength is added if necessary to
distinguish components. Components 19 and 21 are
accumulation and coarse-mode dust analogs, having
different particle size distributions and single scattering
albedos.15 These components are selected on the basis
of the analysis of multiple global atmospheric transport
model results, field observations, and the expected
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MISR sensitivity to particle size, shape, and optical
properties.14 All the components are assumed to have
lognormal size distributions, which are widely used in
both the aerosol optics and aerosol chemistry commu-
nities. They represent reasonably well the typical peak
in particle concentration, the large-size-regime tail, and
the usual, fairly steep cutoff for small sizes. Assuming a
constant particle density, the relative mass distribution
by particle size can be calculated, and is shown in
Figure 1. Because components 2, 8, and 14 are all as-
sumed to have identical size distributions, they are
represented in Figure 1 by a single curve. The mass
distributions of components 6 and 21 are very similar,
with 21 slightly flatter than 6. As indicated in Figure 1,
particles larger than 2.5 �m may contribute substan-
tially to particle mass for these two components.

The radiative properties of each component such as
the path radiances at different wavelengths and satellite
viewing geometries are calculated and archived in a
look-up table. During the retrieval process, the path

radiance of each aerosol mixture is calculated, and com-
pared with the observed radiances.13,14 A set of statisti-
cal tests are performed to determine which of the aero-
sol mixtures fit the observed radiance well. For
computational efficiency, an aerosol mixture is limited
to consist of up to three externally mixed aerosol com-
ponents in the MISR operational retrieval algorithm.
The contribution of an aerosol component to total col-
umn AOD may range from 0 to 100% in increments no
smaller than 5%, and contributions from all compo-
nents sum to 100%. Even with only three components
in each mixture, over 12,000 possible mixtures can be
theoretically made out of eight aerosol components,
but most of them are not common in the natural envi-
ronment. In addition, sensitivity studies and available
validation measurements indicate that if MISR can dis-
tinguish two aerosol components externally mixed in
the atmospheric column, each component’s contribu-
tion to AOD can be retrieved to an accuracy of approx-
imately 20%. This result is expected for reasonable aero-
sol optical depth, surface properties, and relatively
cloud-free conditions, and it may be exceeded for better
conditions.15–17 It implies that MISR is only able to
distinguish a limited number of aerosol mixtures with
confidence. Given all these constraints, 74 aerosol mix-
tures are considered in the Version 17 MISR aerosol
retrieval. These mixtures can be organized into eight
mixture classes consisting of all mixtures having the
same components, but in different proportions (Table
2). The naming convention of the mixture classes is
generally particle shape, followed by the description of
each of the components (e.g., effective radius and sin-
gle scattering albedo).

METHODS
Calculation of Fractional AOD in the Lower

Atmosphere
We can calculate the fractional AOD contribution of
each aerosol component as its average contribution to
total AOD across all the successful mixtures (eq 1). The
result is up to eight component-specific AOD values for
any given MISR aerosol observation, each of which

Table 1. Aerosol components assumed in MISR Version 17 retrievals.

No. Name
Min d a

(�m)
Max d a

(�m)

Characteristic
Diameter

(�m)b
Distribution

Widthb

Volume-Weighted
Mode Diameter

(�m)3

Single Scattering
Albedo

(558 nm)

1 Spherical_nonabsorbing_0.06 0.002 0.8 0.06 1.65 0.10 1

2 Spherical_nonabsorbing_0.12 0.002 1.5 0.12 1.70 0.21 1

3 Spherical_nonabsorbing_0.26 0.02 3.0 0.24 1.75 0.45 1

6 Spherical_nonabsorbing_2.80 0.2 100.00 1.00 1.90 4.55 1

8 Spherical_absorbing 0.12_ssa_green_0.9 0.002 1.5 0.12 1.70 0.21 0.90

14 Spherical_absorbing 0.12_ssa_green_0.8 0.002 1.5 0.12 1.70 0.21 0.80

19 Grains_mode1_h1 (dust) 0.2 2.0 1.00 1.50 1.40 0.98

21 Spheroidal_mode2_h1 (dust) 0.2 12.0 2.00 2.00 5.22 0.90

Notes: aMin d and Max d are the minimum and maximum particle diameters for a given aerosol component. bThe number-weighted lognormal size distribution is described as

dN�d�

dd
�

1

d � ln��� � �2�
exp � �ln�d� � ln�dc��

2

2�ln����2 � ,

where � is the distribution width and dc is the characteristic diameter of the distribution. cThe volume-weighted mode diameter is calculated assuming a spherical particle shape.

Figure 1. Mass size distribution for the MISR aerosol components.
Note that Components 8 and 14 have the same mass distributions by
size as Component 2, and the distributions of Components 6 and 21
are nearly identical in the plotted size range. The truncated lognor-
mal distributions reflect the maximum particle sizes listed in Table 1.
The mode diameters are also listed in Table 1.
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represents the aggregated contribution of one aerosol
component.

AODi,k �

�
j � 1

74

�AODmixture j � Fractioncomponent i in mixture j

No. of successful mixtures
(1)

where AODi,k is the fractional component i in the air col-
umn for a MISR aerosol observation k; AODmixture j is the
total AOD (558 nm) of mixture j; Fractioncomponent i in mixture j

is the contribution of component i to the total mid-visible
AOD for mixture j; and � 	 1 if mixture j is a successful
mixture; otherwise � 	 0.

To compare MISR fractional AOD, which is a column
measure, with EPA PM2.5 constituent concentrations mea-
sured at ground level, the vertical distribution of particles
must be considered. Because measurements of aerosol
vertical profiles over large regions of the United States are
not currently available, we used the simulation results
from chemical transport models such as GEOS-Chem or
air quality models such as CMAQ18,19 to fill in this infor-
mation. There are few publications regarding the valida-
tion of model-simulated aerosol vertical profiles. One
study reports that the uncertainty of GEOS-Chem vertical
profiles of aerosol extinction is reported within 25% of
lidar observations at a few locations.20 The lower-air pro-
portion of fractional AODs are calculated by scaling the
MISR column AODs with model-simulated particle pro-
files as shown in eq 2.9

MISR lower-air AOD �
Model lower-air AOD
Model column AOD

� MISR total AOD
(2)

It should be noted that the MISR retrieval reports col-
umn average aerosol shape, single-scattering albedo,

and size distribution, as there is no height-resolved
aerosol information in the MISR data, except for stereo-
derived elevations for discrete aerosol plumes. In addi-
tion, the MISR data alone cannot determine whether
different sized particles are from different sources, or
are simply more or less hydrated, unless detectable dif-
ferences in other particle properties, such as shape,
make these distinctions possible. The uncertainties
caused by these assumptions can not be quantified
without additional data, hence are not discussed fur-
ther. From this point on, we refer to MISR lower air
fractional AODs simply as MISR fractional AODs.

Linking EPA PM2.5 and Component
Concentrations with MISR Fractional AODs

We can conduct regression analysis to link the concen-
trations of PM2.5 mass and its major constituents (e.g.,
SO4

2�, NO3
�, OC, EC, and possibly silicon concentra-

tion as a surrogate for mineral dusts) measured by the
STN network, with MISR fractional AODs. The general
model form is given in eq 3. On the left hand side, the
dependant variable, EPA PM2.5 constituent concentra-
tion, may include PM2.5 mass concentration, concen-
trations of the individual PM2.5 constituents, or silicon
concentration. On the right hand side, MISR fractional
AODs serve as the main predictor variables. The change
of relative humidity (RH) is expected to influence the
association between AOD and particle mass concentra-
tions.21,22 In principle, the form of eq 3 allows the effect
of RH on each MISR aerosol component to be assigned
individually. For example, because RH changes have a
very limited impact on mineral dust particles, no cor-
rection factors are necessary for these components. If
total AOD is used as the single predictor, applying a RH
correction factor to it would introduce uncertainty to
predicted PM2.5 concentrations when dust makes up a

Table 2. MISR aerosol mixtures used in Version 17 retrievals and the contributions of aerosol components to each mixture.

Mixture Class Mixture Class Name
1st Component and Its Fractional

Contribution to Mixture
2nd Component and Its Fractional

Contribution to Mixture
3rd Component and Its Fractional

Contribution to Mixture

1 (Mixtures 1–10) Spherical_Reff_0.06_Reff_2.80_
Nonabsorbing

1, Fractions: 0.9, 0.85, 0.8, 0.75,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2

6, Fractions: 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8

None

2 (Mixtures 11–20) Spherical_Reff_0.12_Reff_2.80_
Nonabsorbing

2, Fractions: 0.9, 0.85, 0.8, 0.75,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2

6, Fractions: 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8

None

3 (Mixtures 21–30) Spherical_Reff_0.26_Reff_2.80_
Nonabsorbing

3, Fractions: 0.9, 0.85, 0.8, 0.75,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2

6, Fractions: 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8

None

4 (Mixtures 31–40) Spherical_Reff_0.12_SSA_green_
0.9_Reff_2.80_SSA_green_
1.0_Absorbing

8, Fractions: 0.9, 0.85, 0.8, 0.75,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2

6, Fractions: 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8

None

5 (Mixtures 41–50) Spherical_Reff_0.12_SSA_green_
0.9_Reff_2.80_SSA_green_1.0_
Absorbing

14, Fractions: 0.9, 0.85, 0.8, 0.75,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2

6, Fractions: 0.1, 0.15, 0.2, 0.25,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8

None

6 (Mixtures 51–62) Spherical_Reff_0.12_Reff_2.80_
Med_Dust

2, Fractions: 0.72, 0.48, 0.16, 0.54,
0.36, 0.12, 0.36, 0.24, 0.08,
0.18, 0.12, 0.04

6, Fractions: 0.08, 032, 0.64, 0.06,
0.24, 0.48, 0.04, 0.16, 0.32, 0.02,
0.08, 0.16

19, Fractions: 0.2, 0.2, 0.2, 0.4, 0.4,
0.4, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8

7 (Mixtures 63–70) Spherical_Reff_0.12_Med_Dust_
Coarse_Dust

2, Fractions: 0.4, 0.4, 0.4, 0.4, 0.2,
0.2, 0.2, 0.2

19, Fractions: 0.48, 0.36, 0.24, 0.12,
0.64, 0.48, 0.32, 0.16

21, Fractions: 0.12, 0.24, 0.36, 0.48,
0.16, 0.32, 0.48, 0.64

8 (Mixtures 71–74) Med_Dust_Coarse_Dust None 19, Fractions: 0.8, 0.6, 0.4, 0.2 21, Fractions: 0.2, 0.4, 0.6, 0.8
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large proportion of particle mass. Assigning RH correc-
tion factors to non-dust MISR aerosol components re-
quires careful consideration because each of them can
be a mixture of several species with identical size dis-
tributions. Seasonal and regional indicators can be in-
cluded in the models if detailed information on particle
hygroscopicity is not available. Apparently, knowledge
about the spatial and temporal variation of PM2.5 pol-
lution plays an important role in determining the spe-
cific formats of seasonal and geographical variables as
well as the RH correction factors. Interested readers can
find a few examples in our previous publications.10,11

EPA PM2.5 Constituent Concentration

� 
0 � �
i � 1

8


i � MISR fractional AODi

� RH correction factori � 
9 � Seasonal Indicator

� 
10 � Geographical Indicator

(3)

The adjusted R2 is defined as 1 � [(n � 1) � (1 � R2)]/(n � k),
where R2 is the regular model R2, defined as the ratio of
the sum of squares explained by a regression model and
the total sum of squares around the mean. n is the
number of non-missing observations, and k is the num-
ber of variables in the model. When the sample size is
small, the adjusted R2 can effectively account for the
lost degrees of freedom caused by adding more variables
into the model.23 Because MISR data are relatively
sparse, the adjusted R2 value can serve as the primary
measure of model performance and selection criterion.
Physical interpretation of the parameter estimates
should also serve as an important model selection cri-
terion. At comparable adjusted R2 levels, the model
with positive regression coefficients for all fractional
AOD variables should be selected as the final model
because it is physically meaningful. The regression co-
efficients of the seasonal and geographical indicators
can be either positive or negative.

Regression diagnostics such as the Cook’s Distance
(Cook’s D) and the Studentized Residual can be applied
to identify data points that have significant impacts on
the estimated regression coefficients, or deviate signif-
icantly from the overall trend of the dataset. To deter-
mine whether a Cook’s D value of a given data point is
large (i.e., this data point may have a large impact on
the regression coefficients), Kutner et al.24 recommend
comparing it to an F distribution with p � 1 degree of
freedom in the numerator and N � p � 1 degree of
freedom in the denominator. p is the number of pre-
dictor variables in the regression model, and N is the
total number of non-missing data. If the Cook’s D value
of a data point is smaller than the 10th or 20th percen-
tile value of this F distribution, the data point has little
influence on the estimated regression coefficients. The
absolute value of the Studentized Residual 	 3 may
also be used as an initial screening criterion, which
identifies individual residuals beyond 99.7% of the data
population.

Estimating the Size Distributions of PM2.5

Constituents Using Regression Results
We can calculate the size distribution of a specific PM2.5

constituent using the regression model linking it with
fractional AODs. For each observation, the product of a
significant fractional AOD value and its regression co-
efficient in a given model has the unit of a concentra-
tion. It represents the estimated contribution of this
aerosol component to the concentration of the PM2.5

constituent, which is the dependent variable of this
model. When averaged over all the observations, we
can calculate the percentage contribution of each sig-
nificant MISR aerosol component to a PM2.5 constitu-
ent. Because each MISR aerosol component has its spe-
cific particle size distribution mathematically expressed
as a probability density function (PDF), the estimated
size distribution of a PM2.5 constituent (also expressed
as a PDF) can be calculated by superimposing the PDFs
of all significant MISR components weighted by their
percentage contributions (eq 4).

PDF of a PM2.5 constituent

� �
i � 1

8

fi � PDF of MISR component i
(4)

The factor fi is the percentage contributions of MISR
component i to the mass concentration of a specific
PM2.5 constituent. If component i is not statistically
significant in the model, fi should be set to zero. A
significant model intercept represents the proportion of
PM2.5 constituent concentration, which cannot be ex-
plained by the model, and therefore should be excluded
when estimating the size distribution. Doing so will not
affect the shape of the estimated size distribution, but
we should be aware that such an estimated size distri-
bution represents only the proportion of a specific
PM2.5 constituent explained by the model. This calcu-
lation can be conducted for each season and geograph-
ical region or for the combined dataset.

In summary, the fractional AOD approach has four
steps. First, we calculate column fractional AOD for
each component (eq 1). Second, we estimate lower-air
fractional AOD by scaling the column fractional AOD
with the simulated aerosol vertical profiles from a CTM
or air quality model (eq 2). Third, we build the regres-
sion models with fractional AOD values as the major
predictors of concentrations of PM2.5 constituents such
as total mass or various chemical species. RH correction
factors and seasonal and geographical indicators of
PM2.5 variations can also be included in the models to
improve model performance (eq 3). These models can
be used to produce PM2.5 exposure estimates when
ground measurements are not available. The final step
is to derive particle size distribution information using
the regression coefficients (eq 4).

In a case study using 2005 EPA STN data in the
continental United States, we estimated ground-level
concentrations of PM2.5 mass and its major constitu-
ents such as sulfates, nitrates, and OC using the ap-
proach described in this paper. GEOS-Chem simulated
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aerosol vertical profiles provided the scaling factors to
calculate the lower-air MISR fractional AOD values. Our
results show that regression models with fractional
AODs as predictor variables have substantially higher
predictive powers when compared with similar models
using only total-column AOD as a predictor. The im-
provements of adjusted R2 values range from 19 to 44%
in the east, and even greater in the west. Fine particle
size distributions estimated by these models compared
reasonably well with results reported in the literature.
Details of this case study are presented in a companion
paper, “Estimating Fine Particulate Matter Component
Concentrations and Size Distributions Using Satellite-
Retrieved Fractional Aerosol Optical Depth: Part 2—A
Case Study.”25

SENSITIVITY ASSESSMENT OF MISR
RETRIEVED AEROSOL

Microphysical Properties
As mentioned in the Introduction, a set of statistical tests
are used in the MISR aerosol retrieval algorithm to
determine which of the 74 mixtures are successful. This
means that more than one mixture may be considered
a good fit to the observations. In general, fewer success-
ful mixtures mean better constrained retrieval. There-
fore, the validity and performance of the method de-
scribed in the previous sections is directly related to
MISR’s ability to distinguish aerosol components. Note
that a more accurate MISR aerosol retrieval (i.e., less
successful mixtures) is not equivalent to the observed
atmospheric aerosol consisting of only the few compo-
nents in the successful aerosol mixtures. More realisti-
cally, it means that the observed aerosol is better cap-
tured by MISR-assumed aerosol optical properties. Fully
testing MISR aerosol microphysical property retrievals,
especially when multiple particle modes are present, is
very difficult. In situ measurements of aerosol optical
properties such as those acquired during dedicated field
campaigns are required. Given the low maturity level of
Version 17 particle size and single-scattering albedo
information, we conduct a brief assessment of the con-
sistency of those aerosol mixtures considered successful
by the MISR retrieval algorithm. When MISR is not able
to distinguish among different aerosol mixtures, it be-
comes less meaningful to use fractional AODs to predict
the concentrations of ground-level PM2.5 constituents.
This assessment serves partially as a quality assurance
for the method developed in this paper.

We conduct this assessment from two different as-
pects. First, as seen in Table 2, MISR aerosol mixtures
can be divided into two large clusters, non-dust (mix-
tures 1–50) and dust-containing (mixtures 51–74). The
non-dust mixtures can be further divided into two clus-
ters, that is, nonabsorbing (mixtures 1–30) and absorb-
ing (mixtures 31–50). The sensitivity of MISR retrievals
can be evaluated by examining whether MISR can dis-
tinguish different clusters of mixtures. For example,
high sensitivity to mineral dust would mean that for a
dusty observation, few, if any, non-dust mixtures are
considered successful by MISR retrieval algorithm.15

MISR retrieval sensitivity to particle type is indicated,
for example, by whether mixtures from both the non-
dust and the corresponding dust-containing mixtures
are simultaneously considered successful or are distin-
guished by the algorithm. Second, we examine whether
mixtures within each mixture class having the most
different proportions are simultaneously considered
successful. For example, if the first mixture (90% com-
ponent 1 and 10% component 6) and the last mixture
(20% component 1 and 80% component 6) in the first
mixture class are simultaneously considered good fits to
a MISR observation, it indicates that MISR can not
effectively distinguish among these aerosol compo-
nents. In this case, we count that conflicting retrievals
occur in the first mixture class in this observation.
Inconsistent retrievals in other mixture classes are
counted similarly.

To complement the case study presented in the
companion article, the sensitivity assessment is con-
ducted using the entire set of MISR aerosol observations
spatially matched to approximately 200 EPA STN sites
in 2005. There are 4537 matched data records in total.
Kahn et al.16 noted that when AOD at 558 nm falls
below approximately 0.1 or 0.2 over ocean, information
in the satellite observations about particle properties
decreases and the number of successful mixtures often
grows. Consequently, we limit our data to those with
column AOD value greater than 0.15 and less than or
equal to 1.5. Setting the lower limit of 0.15 reduces the
statistical power of our analysis, as it excludes over 60%
of the raw data and reduces the dynamic range of the
data. However, this is necessary so that the quality of
MISR data can be maintained. This lower limit may be
relaxed to include less polluted days as MISR data be-
come more mature. The upper limit is set to reduce the
possibility of including erroneous observations caused
by inadequate cloud screening. Although AOD values
greater than 1.5 have been frequently observed in the
megacities of developing countries such as Beijing,26

our previous study suggests that it is very rare in the
United States.27 In our case, setting the upper limit of
1.5 only excludes less than 0.3% of the raw data. Be-
cause it is widely known that PM2.5 composition in the
east is different from the west, analyses are conducted
for the two regions separately. There are 1269 MISR
observations spatially matched to STN sites in the east,
and 373 in the west.

The median number of successful aerosol mixtures
in each observation is 7 in the east and 17 in the west.
The number of successful mixtures decreases as AOD
increases, indicating higher sensitivity of MISR to aero-
sol microphysical properties at higher AOD values, as
expected. MISR identified a single successful mixture in
86 observations in the east and 5 observations in the
west. For the rest of the data, the average coefficient of
variation of AOD (the AOD standard deviation of all
successful mixtures divided by the mean AOD) is 15%
in the east and 22% in the west. Figure 2 shows the
percentages of (a) dust-containing mixtures and (b)
non-absorbing mixtures (or bright mixtures) in a MISR
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observation, separated into east and west. The percent-
ages of non-dust and dust-containing mixtures sum up
to one, and the percentages of nonabsorbing and ab-
sorbing mixtures sum to 1. A highly skewed distribu-
tion indicates higher retrieval sensitivity, therefore
lower error. A flat or centered distribution, on the other
hand, means inability to distinguish different mixtures,

therefore higher retrieval error. MISR aerosol data dis-
play similar distributions of the percentage of dust-
containing mixtures in an observation in the east and
west. Approximately 40% of the observations in the
east have no dust-containing mixtures, as compared
with 27% in the west. Over 80% of the data have either
few dust-containing mixtures (�20%) or many (�80%)
in one observation, for both east and west. Only 4% of
the data have nearly equal numbers of non-dust and
dust-containing mixtures (i.e., those having 40–60% of
dust-containing mixtures). This 4% retrieval error
shows that MISR has a relatively high sensitivity to
distinguishing spherical from nonspherical particles.
The percentage distributions of non-light-absorbing
mixtures are also similar in the east and west, except
that over half of the data in the east contain 100%
non-light-absorbing mixtures. The particles in the east
are brighter possibly because of the greater contribution
of bright sulfate particles to the overall aerosol abun-
dance. However, 18–21% of the data have nearly the
same number of non-light-absorbing and absorbing
mixtures in both the east and west, suggesting that
Version 17 data has a larger retrieval error when differ-
entiating particles with different single-scattering albe-
dos. The MISR retrieval assumes that mineral dust has
either grain-like (for accumulation mode) or spheroidal
(for coarse mode) shapes; all other components are
assumed to be spherical.15 The difference in particle
shape, together with scattering properties and size dis-
tributions, help MISR distinguish dust particles from
other particles more easily than spherical particles hav-
ing different absorption characteristics. These trends
agree with expectations based on MISR pre-launch sen-
sitivity studies.8,14

Table 3 lists the prevalence of conflicting retrievals
made by MISR in the first six mixture classes in the east
and west, respectively. Conflicting retrievals in the last
two mixture classes are not discussed here because they
are difficult to define. The prevalence rate is the ratio of
the occurrences of conflicting retrievals over the num-
ber of successful mixtures in each mixture class. For
example, 455 MISR observations in the east report suc-
cessful mixtures in mixture class 1 and conflicting mix-
tures are found in 36 of these samples. As a result, the
prevalence rate of conflicting retrievals in mixture class
1 in the east is 36/455 	 8%. A higher prevalence rate
suggests that MISR cannot accurately determine the
relative contribution of each component to total AOD.
Therefore, it is an indicator of the retrieval uncertainty
of individual fractional AOD values. This ratio ranges

Figure 2. Distributions of (a) dust-containing and (b) non-light-
absorbing mixtures. The y-axis represents the percentage of obser-
vations in the west or east. The x-axis of plot (a) represents the
percentage of dust-containing aerosol mixtures (vs. non-dust mix-
tures) in an observation. The x-axis of plot (b) represents the per-
centage of non-light-absorbing aerosol mixtures (vs. the light-ab-
sorbing mixtures) in an observation.

Table 3. The prevalence rates of conflicting MISR retrievals in different mixture classes in the east and west.

Mixture Class 1 2 3 4 5 6

Presence count of successful mixtures in each mixture
class in the east

455 1098 343 561 228 743

Prevalence of conflicting retrievals 8% 5% 11% 7% 11% 8%
Presence count of successful mixtures in each mixture

class in the west
264 317 191 222 122 271

Prevalence of conflicting retrievals 31% 19% 22% 21% 21% 11%
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between 5% (mixture class 2) and 11% (mixture classes
3 and 5) in the east, and between 11% (mixture class 6)
and 31% (mixture class 1) in the west. The uncertainties
of fractional AOD retrievals are likely to increase the
model errors when estimating surface PM2.5 concentra-
tions, which will be discussed in the companion paper.
When assessed together, the above results show that
MISR Version 17 aerosol microphysical properties have
good sensitivity and internal consistency in the eastern
United States, which gives confidence to our fractional
AOD models. The sensitivity is not as good in the west,
partially because of a lower overall AOD level (0.24, vs.
0.30 in the east).

In summary, MISR Version 17 data can effectively
distinguish between dust particles and non-dust parti-
cles, less so between bright and darker particles. In
addition, MISR data are more consistent internally in
the east than in the west. Significant upgrades to the
MISR particle property retrievals are expected in subse-
quent versions of the product, as the results of recent
field campaigns and other analyses are incorporated
into the algorithm.

SUMMARY
We take a four-step approach in linking MISR retrieved
aerosol microphysical information with ground level
PM2.5 mass concentrations. We first calculate the frac-
tional AOD values for each MISR aerosol component
using the mixtures selected in the MISR Version 17
aerosol product. We estimate the lower atmospheric
proportions of the fractional AOD values using aerosol-
transport-model-simulated aerosol vertical profiles as
scaling factors. Regression models are then developed,
with the derived lower-air fractional AODs as major
predictor variables to estimate ground-level concentra-
tions of total PM2.5 mass and major PM2.5 constituents.
Finally, particle size distributions can be estimated as
well, using the regression coefficients obtained in the
third step. The fractional AOD models are able to adjust
for differences in fine particle composition between the
eastern and western United States. They are also flexible
enough to allow better RH correction based on the
hygroscopicity of individual aerosol components. Be-
cause the fractional AOD approach uses particle type
data produced by MISR, in addition to the total AOD,
the regression models contain measurement-based in-
formation about the concentrations and size distribu-
tions of different PM2.5 constituents. Our assessment of
MISR’s sensitivity shows that Version 17 aerosol micro-
physical properties have good internal consistency; the
uncertainty levels of fractional AODs range between 5
and 11% in the east, and between 11 and 31% in the
west. Further analysis indicates that MISR is able to
distinguish dust particles from non-dust particles with
an error of approximately 4%, and to distinguish light-
absorbing particles from non-light-absorbing particles
with an error of approximately 20%.

Although the fractional AODs can be calculated
using MISR data alone, the development of the regres-
sion models needs the support of ground-level PM2.5

measurements. Like any data-driven statistical model,

the regression coefficients of the predictor variables
may change if the model is fitted with another dataset.
PM2.5 speciation data from a few sites are needed to
calibrate the regression models before they can be ex-
panded temporally and spatially. In the case where
there is no PM2.5 speciation data available, directly
applying these regression models developed in the
United States in another region could result in pre-
dicted PM2.5 concentrations with higher uncertainties.
However, when compared with the most previous
model studies that treat total AOD as a single predictor
of PM2.5, our approach can have significantly improved
predicting power, as shown in the companion paper.
This approach may be used to extend the STN network
to provide better estimates of PM2.5 and its major con-
stituents, therefore to help optimize the design of re-
gional or national emission control policies.
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