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TECHNICAL PAPER

Prediction of daily fine particulate matter concentrations using aerosol
optical depth retrievals from the Geostationary Operational
Environmental Satellite (GOES)
Alexandra A. Chudnovsky,1,⁄ Hyung Joo Lee,1 Alex Kostinski,2 Tanya Kotlov,1

and Petros Koutrakis1
1Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
2Department of Physics, Michigan Technological University, Houghton, MI, USA⁄Please address correspondence to: Alexandra A. Chudnovsky, Landmark Center West, Room 420, 401 Park Drive, Boston, MA 02215;
e-mail: achudnov@hsph.harvard.edu

Although ground-level PM2.5 (particulate matter with aerodynamic diameter <2.5 �m) monitoring sites provide accurate
measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological
studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures
to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from
the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area
of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5

relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration
profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual
observations, R2 ¼ 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially
resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies.

Implications: The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing
determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-
PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great
potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 � 4-km
resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS)
10-km product has the potential to capture PM2.5 variability within the urban domain.

Introduction

Routinemeasurements of ground-level PM2.5 (particulatemat-
ter with aerodynamic diameter <2.5 mm) concentrations by air
quality monitoring networks are of great importance in assessing
exposures, but their spatial coverage is limited and often insuffi-
cient for epidemiological studies. Satellite remote sensing adds
another important tool to retrieve for aerosol properties, due to
global repeated observations of the earth surface and atmosphere,
and is often the only source of PM2.5 data in areas where no
ground monitoring stations are available (Wang and Christopher,
2003). The most common parameter derived from satellite obser-
vations is the aerosol optical depth (AOD), which is a measure of
the extinction of electromagnetic radiation at a given wavelength
due to the presence of aerosols in an atmospheric column.

Many studies have examined the relationship between total-
column AOD and surface PM2.5 measurements. Hoff and

Christopher (2009) reviewed more than 30 papers that investi-
gated the relationship between total-column AOD and surface
PM2.5 measurements. Most have developed linear regressions
between the satellite-measured AOD and the PM2.5 mass
concentrations measured at the ground (Engel-Cox et al., 2004;
Wang and Christopher, 2003). More recent investigations have
often used ancillary information such as boundary layer height,
humidity, and other variables to better relate AOD and PM2.5

(Gupta et al., 2006; Koelemeijer et al., 2006; Liu et al., 2005).
Several studies have employed light detection and ranging
(LIDAR) instruments to capture the vertical aerosol distribution
at specific locations (Engel-Cox, 2006; Schaap et al., 2009).
These studies from across the globe have reported a wide range
of correlations between AOD and PM2.5 mass.

As mentioned above, the relationship between column AOD
and PM2.5 is affected by a variety of parameters. These include
relative humidity, mass extinction efficiency, hygroscopic
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growth factor, vertical distribution of aerosols, aerosol size dis-
tribution, and variability in surface reflectance (Wang and
Christopher, 2003; Kaufman and Fraser, 1983). Recently, we
proposed that the effects of these time-varying parameters influ-
encing theAOD-PM2.5 relationship can be taken into account with
daily adjustments (Lee et al., 2011). This approach was used to
accurately predict PM2.5 concentrations using the MODerate
resolution (10 � 10 km) Imaging Spectroradiometer (MODIS)
AODmeasurements. Regrettably, theMODIS instrument is reach-
ing the end of its design life and will be replaced by Visible
Imaging Infrared Radiometer Suite (Report 1, http://www.nasa.
gov/mission_pages/NPP/main/).

For the North America region, the National Oceanic and
Atmospheric Administration Geostationary Operational
Environmental Satellite (NOAA GOES) provides the Aerosol and
Smoke Product (GASP) at a higher spatial resolution (4 � 4 km)
and temporal resolution (every 30 min) compared with the once-
a-day polar-orbiting MODIS sensor. However, the GASP AOD
retrievals are less precise than those from the polar-orbiting
instruments because of the sensor’s coarse spectral resolution
and fixed viewing geometry (Prados et al., 2007). Despite these
limitations, GASPAOD retrievals were shown to be reasonably
well correlated (albeit less precise than MODIS) with Aerosol

Robotic Network (AERONET) ground measurements of the
total aerosol column for the northeastern United States.
(Prados et al., 2007). Will our approach overcome the retrieval
limitations?

In this study, we explore whether it is possible to obtain
accurate estimates of PM2.5 concentrations using GASP AOD
retrieval with a resolution of 4 � 4 km, on a regional scale
(�100–250 km), conducted for the New England area, in the
northeastern part of United States. Our goals are to explore the
inherent variability of the AOD-PM2.5 relationship on a daily
basis and to show how this variability can be captured by a
mixed-effects model approach during the period of April 24
(starting day of GOES-12 East satellite data) through
December 31, 2003. Finally, we present the modeled spatial
pattern of PM2.5 levels within the study domain.

Methods

Ground-level PM2.5 data

Twenty-four-hour integrated PM2.5 concentrations measured
at 26 U.S. Environmental Protection Agency (EPA) PM2.5 mon-
itoring sites were used to adjust satellite data (Figure 1). These

Figure 1. PM2.5 monitoring site locations within the study domain.
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sampling sites include 15 sites fromMassachusetts (MA) and 11
sites from Connecticut (CT), during the period of April 24, 2003,
through December 31, 2003. Sampling frequency differed by
site and included samples collected every day, every third day,
and every sixth day. Because AOD from NOAA/GOES has a
high temporal resolution, it is possible to adjust hourly PM2.5

measurements. For the small number of PM2.5 sites that provide
hourly concentration data, we used daily average PM2.5

concentrations.

Satellite data

The National Oceanic and Atmospheric Administration/
National Environmental Satellite Data and Information Service
(NOAA/NESDIS) provides near-real-time aerosol optical depth
(AOD) from the Geostationary Operational Environmental
Satellite (GOES-12 East) Imager known as the GOES Aerosol
and Smoke Product (GASP) (Knapp, 2002; Knapp et al., 2005;
Kondragunta et al., 2008). The imager measures the top-of-the-
atmosphere radiance in one visible channel and four infrared
channels. The AOD retrieval uses only the visible (520–720 nm)
channel to assess surface reflectivity and atmospheric and aero-
sol properties. The cloud mask is determined from the visible
channel and the two infrared channels: channel 2 (3900 nm) and
4 (10,700 nm) (Kondragunta et al., 2008; Prados et al., 2007). An
additional advantage of GOES is its half-hourly temporal cover-
age that provides much more opportunity for avoiding clouds at
least once each day. Regression of GASP AOD values against
AOD ground measurements at 10 northeastern U.S. and
Canadian sites during 2003–2007 found correlation coefficients
in the range of 0.68–0.79 (Prados et al., 2007).

GOES AOD data for April 24 through December 31, 2003,
were obtained from NOAA/NESDIS. Data were screened for
outliers based on threshold criteria to avoid cloud contamination,
cloud shadows, and bright surfaces (Knapp, 2002; Knapp et al.,
2005; Kondragunta et al., 2008; Prados et al., 2007). Specifically,
AOD values were discarded when (1) they were greater than 2.0;
(2) the surface reflectivity was less than 0.5% or greater than 15%;
(3) the standard deviation of the AOD over a 3 � 3-pixel box
surrounding each 4� 4-km pixel was greater than 0.2; and (4) the
cloud-screening algorithm identified a cloud for that pixel. In
addition, we averaged AOD measurements corresponding to
11:15 a.m. to 5:15 p.m. local time to generate daytime AOD
estimates. During this time frame, the root mean square (rms)
difference of GASPAODversus groundAERONETAODwas the
lowest, being considerably higher at both the beginning and end of
the day (Prados et al., 2007). This is due to cloud shadows, which
are more prevalent at high solar zenith angles.

Overall, 165 AOD retrieval days were available during the
studied period. Because the median number of AOD retrievals per
day was 6, the daily average GASP AOD was expected to create
higher temporal coverage compared with the snapshots taken by
polar-orbiting satellite sensors such as MODIS. Negative AOD
values, caused by errors in surface reflectivity estimation, were
included because they provide useful information on low-AOD
situations (Paciorek et al., 2008). In addition, we created a 4-km
resolution grid for data spatial alignment and full-domain pre-
diction. We selected this spatial resolution to match the nominal

resolution of the satellite data. To assign AOD values to the
regular 4-km modeling grid, we created a network of Thiessen
polygons in ArcGIS (version 9.3; Earth System Research
Laboratory [ESRI]), each of which is a rectangle with an area
of 16 km2. We calculated the AOD value for each 4-km grid cell
as the area-weighted average of the AOD values of the Thiessen
polygons intersecting with this cell. AOD values at each corre-
sponding EPA site were determined according to the matched
grid cell in which the site falls.

AOD-PM2.5 relationship

We investigated the associations between AOD and PM2.5

measurements. Toward this end, we used AOD data correspond-
ing to snow-free and clear-sky observations and PM2.5 daily
measurements conducted at the sampling sites. Because these
relationships between AOD and PM2.5 measurements vary daily,
mixed-effects models were used to allow for the regression
intercepts and slopes to vary daily. This modeling approach is
presented in the next section.

Mixed-effects model approach

A mixed-effects model approach is a generalization of the
standard linear model that incorporates both fixed and random
effects, thus enabling the analyses of data generated from several
sources of variation. This model approach accounts for day-to-
day variability. A basic assumption is that the relationship varies
daily because it depends on time-varying parameters such as
relative humidity, PM2.5 vertical and diurnal concentration pro-
files, PM2.5 optical properties, and surface reflectance. In a
recent paper, we showed that the mixed-effects model approach
provides higher accuracy and precision in predicting PM2.5 con-
centrations based on the MODIS AOD data set than a simple
regression model (Lee et al., 2011). In the present study, we use
this model approach to predict PM2.5 concentrations based on
GOES AOD retrievals. Toward this end, quantitative relation-
ships between PM2.5 concentrations measured at the 26 PM2.5

monitoring sites and AOD values in their corresponding grid
cells were derived. We used the following mixed-effects model
with random intercepts and slopes (eq 1):

PMij ¼ aþ uj
� �þ b1 þ vj

� �� AODij

� �þ Si þ eij
ujvj
� � � o oð Þ;Sb

� � (1)

where PMij is the PM2.5 concentration at a spatial site i on day j;
AODij is the AOD value in the grid cell corresponding to site i on
day j; a and uj are the fixed and random intercepts, respectively;
b1 and vj are the fixed and random slopes, respectively; Si�N(0,
ss

2) is the random intercept of site i; "ij � N(0, s2) is the error
term at site i on a day j and Sb is the variance-covariance matrix
for the random effects. The AOD fixed effect in the model (eq 1)
accounts for the effect of AOD on PM2.5, which was the same for
all study days. The AOD random effects explain the daily varia-
bility in the AOD-PM2.5 relationship. It is also critical to add a
site term as a random effect. In fact, the AOD value in a 4� 4-km
grid cell is an average optical depth in the given grid cell
corresponding to an overall relatively low pollution area,
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whereas the PM2.5 measurement can indicate relatively high
pollution levels due to site proximity to heavy vehicular traffic
areas. The solution of the mixed-effects model equations is a
maximum likelihood, a form of estimation that accounts for the
parameters in the fixed-effects structure of the model to reduce
the bias in the covariance parameter estimates (Lindstrom and
Bates, 1988; Laird andWare, 1982). Currently, this is the method
implemented for the SAS statistical software package (proc
mixed; SAS Institute, Cary, NC).

Days with less than two matched AOD-PM2.5 measurements
were excluded from the analysis. This resulted in the exclusion
of 25 days. Subsequently, the model prediction was examined for
each day using the root mean squared error (RMSE) between the
measured and predicted PM2.5 concentrations. Fifteen days with
high RMSE values (>5 µg m�3) were excluded because the
AOD-PM2.5 relationships were not considered reliable, possibly
due to errors in estimation of AOD.

Finally, PM2.5 concentrations for each grid cell on a day jwere
estimated using the corresponding AOD values as follows:

PMij ¼ aþ uj
� �þ b1 þ vj

� �� AODij

� �þ eij (2)

The fixed and random intercepts and the fixed and random
slopes for each study day were derived previously from eq 1.
Note that the random estimates for the site term were excluded.
In this way AOD values were unbiased and representative of their
corresponding grid cell.

Importantly, it should be noted that the 6-hr GOESAOD values
(11:15 a.m. to 5:15 p.m.) were used to estimate 24-hr average
PM2.5 concentrations. However, if we assume that on a given day
the (6-hr PM2.5)/(24-hr PM2.5) concentration ratio does not vary
considerably across sites, then the 6-hr mean AOD values are
adequate to predict the 24-hr concentrations. This is because the
daily adjustment takes into account the concentration differences
between these two time intervals for each day.

Model validation

We use a cross-validation (CV) approach to evaluate the
ability of the model to predict PM2.5 concentrations for each
pixel in the study area. Thus, the data set was repeatedly ran-
domly divided into 90% (calibration) and 10% (held-out test)
splits. We applied the fitted calibration model to estimate PM2.5

for the held-out test set. This “out-of-sample” process was
repeated 10 times to calculate the cross-validated (CV) R2

values. Subsequently, the predicted PM2.5 concentrations were
compared with those measured at each site. In addition, we
examined the relationship between the average measured and
predicted PM2.5 concentrations for each site using Pearson cor-
relation coefficients. To examine the model accuracy, we esti-
mated the coefficient of determination (R2) between the
measured and predicted PM2.5 concentrations. Finally, the
model precision was estimated as the square root of the mean
of the squared errors, and % precision was calculated as follows:

% Precision ¼ 100� precision=measured mean PM2:5ð Þ (3)

Estimation of PM2.5 levels in the study domain and
their spatial variability

First, daily PM2.5 concentrationswere estimated for each of the
5570 grid cells. Because the AOD retrieval rate varies by location,
the number of PM2.5 concentration predictions varied by grid cell.
Therefore, a direct comparison among cell means would not be
suitable for the investigation of the PM2.5 spatial patterns within
the study domain. To minimize the potential impact of varying
number of PM2.5 predicted concentrations per grid cell, we first
calculated regional PM2.5 concentrations by averaging the PM2.5

concentrations for the corresponding day, measured by the EPA
stations. Because the number of AOD retrievals varied by day, the
number of available PM2.5 concentrations used to estimate the
daily regional average levels varied by day as well. To obtain
reasonably reliable and representative regional PM2.5 concentra-
tions, we use our daily regional PM2.5 estimations only for days
with 50 or more grid cell predictions. Next, we estimated themean
difference between two parameters: predicted PM2.5 concentration
per grid and regional PM2.5 concentrations for the days where
predictions were available. Finally, the estimated grid cell-specific
PM2.5 mean differences were mapped using ArcGIS. Positive
mean differences, expressed in µg m�3, indicate that on average
levels at a given grid cell are higher relative to the regional average
PM2.5 levels, whereas the opposite is true for negative values.

Results

Descriptive statistics

Table 1 summarizes the mean PM2.5 concentrations measured
at the 26 EPA PM2.5 monitoring sites during our study period.

As can be seen, the mean PM2.5 concentrations ranges from
9.4 (CV ¼ 0.65) µg m�3 in Haverhill, MA (Site ID: 25-009-
5005) to 16.0 (CV ¼ 0.69) µg m�3 in New Haven, CT (Site ID:
09-009-0018). Many of the monitoring sites showed similar
mean PM2.5 concentrations. The mean PM2.5 concentration at
the New Haven site was higher compared with those monitored
at other sites, presumably due to its proximity to the interstate
highway I-95. Furthermore, Table 1 presents the site bias esti-
mates for each of the 26 EPA PM2.5 monitoring sites and their
P value determined using the mixed-effects model (eq 1). As can
be seen, the random-effect estimates of the site term were posi-
tive for relatively high traffic and populated areas such as New
Haven, West Haven, Danbury, and Stamford. These results sug-
gest that it is important to include site bias in a calibration model.

Because the sampling frequency of EPA stations is different
and included samples collected every day, every third day, and
every sixth day, the number of samples used to estimate mean
concentrations also varied by site.

Comparison of GOES-retrieved AOD with
EPA-measured PM2.5 concentrations

As mentioned in Mixed-Effects Model Approach (above), 15
dayswith highRMSE values (>5 µgm�3) were excluded from our
model. Two possible sources of high RMSE can be considered.

Chudnovsky et al. / Journal of the Air & Waste Management Association 62 (2012) 1022–1031 1025



First, there are errors in estimating of AOD during low-pollution
days above bright surfaces and during snowfall. For instance,
because high RMSE was observed on clear low-pollution days
with averaged measured PM2.5 around 2–4 mg m�3, these days
were excluded (August 2 and August 13, October 6 and October
13, and November 3 and November 10). This is consistent with
the study by Prados et al. (2007) that GOES retrieval is more
biased at low AOD ranges. Second, there are some days with
negative correlations between PM2.5 and AOD. Our data set
demonstrated that these days were characterized by transparent
atmosphere (low AOD) but high measured PM2.5 concentrations,
and/or by dirty atmosphere (high AOD) with low measured
ground concentrations. For instance, for June 24 and 27–28,
large AOD values were caused mostly by the aerosols aloft.

Indeed, whereas the satellite-derived AOD is a measure of
particle column in ambient conditions (e.g., variable humidity
and consequently variable amounts of water adsorbed on parti-
cles), PM2.5 mass is a measure of dry particles near the surface;
therefore, these two parameters are not expected to be strictly
correlated. Figure 2 shows the relationship between GOES AOD
values and the corresponding 24-hr integrated PM2.5 concentra-
tions measured at the 26 EPA sites in New England during the
study period, with the coefficient of determination of R2 ¼ 0.24.

To get additional insight into the relationship between AOD
and PM2.5, in Figure 3 we plot (1) different ranges of AOD

conditional on PM2.5 concentrations; and (2) different ranges
of PM2.5 mass conditional on satellite-derived AOD values.

Figure 3a shows that although, in general, low AOD values
correspond to low measured PM2.5 concentrations at the ground,

Figure 2. The relationship between column aerosol optical depth (AOD) derived
from the GOES satellite and 24-hr integrated PM2.5 concentrations measurements
at the 26 EPA sites in New England.

Table 1. Site bias (mg m�3) estimates for 26 EPA PM2.5 monitoring sites

Site ID City N Mean CV Bias P value

09-001-0010 Bridgeport, CT 73 13.1 0.74 0.8 0.2
09-001-0113 Bridgeport, CT 69 12.5 0.70 0.9 0.2
09-001-1123 Danbury, CT 80 13.4 0.52 1.3 0.03
09-001-2124 Stamford, CT 74 14.2 0.66 1.2 0.04
09-001-3005 Norwalk, CT 76 13.3 0.69 1.2 0.05
09-001-9003 Westport, CT 79 12.3 0.64 0.2 0.7
09-003-1003 E. Hartford, CT 234 11.5 0.70 �0.6 0.2
09-003-1018 Hartford, CT 78 12.9 0.66 �0.1 0.8
09-009-0018 New Haven, CT 228 16.0 0.67 4.0 <0.0001
09-009-0026 New Haven, CT 69 12.1 0.70 0.4 0.5
09-009-1123 New Haven, CT 81 14.2 0.70 1.2 0.04
09-009-2008 New Haven, CT 74 12.3 0.80 �0.3 0.6
09-009-2123 Waterbury, CT 80 12.8 0.68 �0.1 0.8
09-009-8003 W. Haven, CT 74 13.0 0.79 1.5 0.01
09-011-3002 Norwich, CT 71 11.7 0.66 �1.0 0.1
25-005-1004 Fall River, MA 71 10.3 0.77 �1.0 0.2
25-009-2006 Lynn, MA 74 10.5 0.64 �2.1 0.001
25-009-5005 Haverhill, MA 68 9.4 0.65 �2.5 <0.0001
25-013-0008 Chicopee, MA 192 10.2 0.98 �2.3 <0.0001
25-013-0016 Springfield, MA 201 12.6 0.75 0.2 0.7
25-013-2009 Springfield, MA 60 11.6 0.70 �0.8 0.2
25-023-0004 Brockton, MA 82 9.7 0.71 �1.3 0.04
25-025-0027 Boston, MA 206 11.8 0.55 0.3 0.5
25-025-0042 Boston, MA 205 11.5 0.62 �1.4 0.007
25-025-0043 Boston, MA 77 13.0 0.59 0.4 0.6
25-027-0020 Worcester, MA 143 10.8 0.63 �1.1 0.004

Notes: CV represents coefficient of variation. Bias represents the random-effect estimates of the site term in the mixed-effects model.
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occasionally low AOD values correspond to high measured
PM2.5 concentrations. For example, low AOD values and high
measured ground concentrations can be observed during very
clear winter days when most of the pollution is near the ground
and there is a shallow boundary layer. In other words, near-
surface PM2.5 concentrations do not reflect the total AOD col-
umn values. For example, December 27–29 were characterized
by such conditions and were excluded from our model
(Figure 3a; highlighted by arrow). Although Figure 3c also
shows that, in general, high AOD values correspond to high
PM2.5 concentrations, high AOD values were observed for
some days with low PM2.5 concentrations, indicating that pollu-
tion at upper levels can be higher than what is observed at the
ground. Similar relations between PM2.5 and AOD are shown in
Figure 3d–f. Figure 3d shows that although some low PM2.5

values correspond to relatively high AOD values, somemoderate
ground PM2.5 concentrations correspond to low retrieved AOD
values (Figure 3e and f). The results in Figure 3 show that the
simple approach that calculates PM2.5-AOD slopes separately
for each day in the study can yield highly variable slope esti-
mates. An alternative approach that pools daily slope estimates
but uses data from all days to stabilize the estimates takes into
account variable factors influencing AOD-PM2.5 relationships.

PM2.5 prediction based on a mixed-effects model

Estimates of average PM2.5 concentrations for each grid cell
were obtained for 135 days during the periodApril 24 toDecember
31, 2003. Figure 4 presents the daily distribution of random slopes
and intercepts resulted from the mixed-effects model.

Figure 4 shows the daily variation of randomAOD intercept and
slope. In addition, the fixed effects of the AOD intercept and slope
were statistically significant: a¼ 10.3 (P < 0.0001) and b1¼ 3.06

Figure 3. (a–c) Frequency distributions of AOD values as a function of PM2.5 concentrations. (d–f) Frequency distribution of PM2.5 mass as a function of AOD values.

Figure 4. Frequency distribution of the random slopes and intercepts.

Chudnovsky et al. / Journal of the Air & Waste Management Association 62 (2012) 1022–1031 1027



(P ¼ 0.007), respectively. Note that these results support the find-
ings mentioned above, shown in Figure 3, that because the para-
meters influencing the relationship between AOD and PM2.5 vary
from day to day within a given domain, it is necessary to adjust for
this daily variability. The random-effect estimates of the site term
for densely populated and high-traffic areas were positive, as pre-
sented in Table 1, confirming that it was also necessary to adjust for
the site bias in our model, as mentioned above.

Figure 5a shows very high R2 values, 0.97 (P < 0.001) for a
model fit and Figure 5b shows R2 of 0.92 (P < 0.001) for out-of-
sample cross-validation fits. Furthermore, we found no bias in
our cross-validation results (slope of observed vs. predicted
concentrations ¼ 1.00).

The site-specific comparison between the measured and pre-
dicted PM2.5 concentrations in the cross-validation (CV) model
is shown in Table 2. As can be seen in this table and in Figure 5,
the CV mixed-effects model performed quite well. This model
explained on average 90% of the variability in the measured
PM2.5 concentrations, with values ranging from 76% in
Boston, MA (Site ID: 25-025-0027) to 99% (as observed for
several sites). The CV test resulted in an R2 value of 0.92, slope
of 0.93, and intercept of 0.90, indicating a good agreement
between the measured and predicted concentrations (Figure 5b).

These results suggest that model predictions were consistent
for most spatial sites, with CV precision ranging from 9.8% (1.5
µg m�3) in Hartford, CT, to 40.6% (4.3 µg m�3) in Lynn, MA,
with a mean value of 20.8%. Because no adjustments were made
for site bias for this CV test, the differences between the mea-
sured and predicted concentrations in Figure 5 likely reflect the

site bias. For instance, PM2.5 concentrations measured at the
New Haven, CT, site, which was located on a ramp to interstate
I-95, were considerably higher than those observed at other sites,
including the site located nearby (0.7 km). Therefore, the differ-
ence between the measured and predicted mean PM2.5 concen-
trations (3.6 µg m�3) can be explained by the fact that this site is
not representative of the corresponding grid cell 4 � 4-km area.
This is further indication that it is necessary to control for site
bias in the mixed-effects model.

Figure 5c shows the cross-sectional comparison between the
mean measured and predicted PM2.5 concentrations for each site
over the study period. This comparison is especially important for
determining whether model predictions are suitable assessments
for epidemiological studies, which require precise estimation of
spatial patterns. The CV test resulted in a relatively high R2 ¼
0.70, indicating good agreement between the mean measured and
mean predicted concentrations. Again, the differences between
the measured and predicted concentrations in Table 2 and the
spread of points along the regression line in Figure 5c are likely
to reflect the site bias. In addition, for cross-sectional comparison,
we include the % precision between the measured and predicted
PM2.5 concentrations using CV analyses (Table 2). This measure
of precision is necessary to better assess model performance,
because the R2 does not reflect systematic differences between
the measured and predicted PM2.5 levels. Furthermore, estimation
of % precision is important because most of the samples were
collected during the summer, when regional pollution exhibits
considerable spatial variability and thus the R2 may not reflect
the good agreement between the predicted and observed values.

Figure 5. (a, b) Mixed-effects model cross-validation performance as assessed by 576 measured and predicted daily PM2.5 concentrations (10% of data). The solid line
represents the regression line, and the dashed line displays the 1:1 line. (c) Cross-sectional comparisons between the average predicted and measured PM2.5 site
concentrations.
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Spatial variability in PM2.5 levels

The PM2.5 spatial patterns within the study domain are shown
in Figure 6. To highlight the spatial patterns, we used the mean
differences between predicted grid-specific PM2.5 and average
regional PM2.5 levels, as discussed in Methods.

During the study period, on average 52 AOD values per grid
cellwere retrieved, after the datawere screened for outliers (e.g., to
avoid cloud contamination, shadows, and bright surfaces). Mean
concentration differences varied from �0.32 to 0.50 µg m�3

(mean¼ 0.02 µgm�3, SD¼ 0.19 µgm�3) and were log-normally
distributed. As expected, highly populated areas such as
Bridgeport, New Haven, Hartford, Boston, Springfield,
Providence, and Albany exhibited higher PM2.5 levels, compared
with rural areas of Vermont and southwestern New Hampshire.
Furthermore, grid cells along major highways (e.g., Highways 91,
95 and 395) tend to have higher PM2.5 concentrations, perhaps
because these cells are more impacted by traffic and are also
densely populated. The spatial concentration patterns observed
in eastern Massachusetts were similar to those found by previous
studies (Kloog et al., 2011; Lee et al., 2011) and by the mixed-
effects model applied to MODIS data set during the same sam-
pling period. It must be noted that the reported PM2.5 spatial
patterns may not be representative of the entire year of 2003
because GOES data were only available after April 24.

Discussion

Several previous studies used GOES GASPAOD as a proxy to
PM2.5 (Liu et al., 2005; 2009; Paciorek et al., 2008). For example,
a two-stage generalized additive model between AOD and PM2.5,
adjusted for relative humidity and planetary boundary layer, was
applied to eastern Massachusetts data and produced an R2 of 0.79
(Liu et al., 2009). Our results suggest that because the relationship
between AOD and PM2.5 varies daily, there is a need to adjust for
this variability within a given domain. For the domain studied, this
daily adjustment renders AOD a robust predictor of PM2.5, with an
R2 of about 0.92. These findings agree with those obtained by
applying the daily adjustment approach to MODIS data (Kloog
et al., 2011; Lee et al., 2011). The advantage of using GOES is its
higher spatial resolution comparedwith that ofMODIS (10 km for
MODIS vs. 4 km for GOES). The improved resolution is expected
to not only reduce exposure assessment error but also generally
result in larger health effects estimates.

Overall, our results show that daily adjustment effectively
controls for the combined effect of many parameters that can
influence the daily variability in the AOD-PM2.5 relationship.
This renders our method robust and simple to use for future
applications. Hoff and Christopher (2009) in their critical review
recommended conducting a study to examine the effects of
extrinsic factors that influence the AOD-PM2.5 relationship

Table 2. Comparisons between the measured and predicted PM2.5 concentrations using mixed-effects model

Site ID City N PM2.5 Measured PM2.5 Predicted Bias R2 Precision % Precision

09-001-0010 Bridgeport, CT 23 13.4 12.3 �1.1 0.94 1.4 10.4
09-001-0113 Bridgeport, CT 22 11.8 10.9 �0.9 0.97 1.8 15.3
09-001-1123 Danbury, CT 25 14.3 12.5 �1.8 0.98 2.6 18.2
09-001-2124 Stamford, CT 30 15.2 13.9 �1.3 0.97 2.5 16.4
09-001-3005 Norwalk, CT 28 15.8 14.5 �1.3 0.87 2.1 13.3
09-001-9003 Westport, CT 29 13.9 13.4 �0.5 0.99 1.5 10.8
09-003-1003 E. Hartford, CT 77 12.2 12.9 0.7 0.97 2.5 20.5
09-003-1018 Hartford, CT 24 12.2 12.3 0.1 0.97 1.2 9.8
09-009-0018 New Haven, CT 72 17.4 13.8 �3.6 0.96 6.9 39.7
09-009-0026 New Haven, CT 27 14.4 14.0 0.4 0.99 1.3 9.0
09-009-1123 New Haven, CT 31 15.4 14.0 �1.4 0.98 2.1 13.6
09-009-2008 New Haven, CT 29 14.0 14.3 0.3 0.99 1.7 12.1
09-009-2123 Waterbury, CT 28 13.9 13.9 0 0.99 1.4 10.1
09-009-8003 W. Haven, CT 28 16.8 15.1 �1.7 0.98 3.9 23.2
09-011-3002 Norwich, CT 24 13.8 14.6 0.8 0.98 1.3 9.4
25-005-1004 Fall River, MA 20 10.7 11.0 0.3 0.96 3.2 29.9
25-009-2006 Lynn, MA 22 10.6 11.8 1.2 0.80 4.3 40.6
25-009-5005 Haverhill, MA 21 10.4 12.2 1.7 0.95 2.9 27.9
25-013-0008 Chicopee, MA 63 9.1 11.6 2.5 0.96 3.6 39.6
25-013-0016 Springfield, MA 65 12.8 12.6 �0.2 0.93 2.5 19.5
25-013-2009 Springfield, MA 20 10.6 11.5 1.3 0.98 1.6 15.1
25-023-0004 Brockton, MA 22 9.6 11.0 1.4 0.99 3.4 35.4
25-025-0027 Boston, MA 69 12.7 12.4 �0.3 0.76 4.1 32.2
25-025-0042 Boston, MA 61 11.7 13.1 1.4 0.98 3.1 26.5
25-025-0043 Boston, MA 19 14.9 14.2 �0.7 0.97 2.0 13.4
25-027-0020 Worcester, MA 47 11.0 13.1 2.1 0.97 3.2 29.1

Notes: N indicates the number of days with both measured and predicted PM2.5 concentrations. Bias is defined as (PM2.5 predicted � PM2.5 measured). Precision is
estimated as the square root of the mean of the squared errors. % Precision is defined as [100 � (precision/PM2.5 measured)].
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separately for each region. This implies that within a given
region, the types of aerosols may be more homogeneous and
the height of the boundary layer and humidity may be more
uniform, making the relationship between AOD and PM2.5 less
variable. Therefore, the proposed method has the advantage that
it can easily be applied to other regions by taking into account the
conditions prevailing in each region, and adjusting for daily
variability in the AOD-PM2.5 relationship.

The high prediction accuracy of our model confirms that the
AOD-PM2.5 relationship exhibits minimal spatial variability on a
given day within the studied region comprising the states of
Massachusetts, Connecticut, and Rhode Island. However, for
larger regions we might encounter much larger variability in
this relationship, so there would likely be a need to divide a
region into subregions (e.g. to provide more homogeneous phy-
sical properties), and thus to construct a separate model for each
subregion.

We also need to consider a few limitations of the methodology
of the present study. The main limitation is that this approach
requires a large amount of daily PM2.5 stations, which are not
always available in any given region. Therefore, the developed
model would not be directly transferable for areas without suffi-
cient EPA PM2.5 monitors. However, typical losses of satellite
AOD retrieval days do not appear to cause a similar limitation.
For example, Kloog et al. (2011) successfully estimated PM2.5

for nonretrieval days based on mixed-effects model and Land
Use (LU) regression. Furthermore, Christopher and Gupta
(2009) concluded that for the continental United States, cloud
cover is not a major problem for inferring monthly to yearly
PM2.5 from space-borne sensors. Therefore, for epidemiological

studies, such data could be used to assess both acute (short-term)
and chronic (long-term) effects of PM2.5, or combinations of
acute and chronic effects.

Apart from the impact of site-specific characteristics, the dif-
ferences between measured and predicted PM2.5 levels can be
attributed to errors in PM2.5 measurements and AOD retrieval.
Sources of errors in the GASPAOD retrieval include assumptions
about the aerosol layer height in the radiative transfer model, the
Lambertian surface assumption in the surface reflectance distribu-
tion, cloud shadows, and the clear sky composite image selected
for calculating the surface reflectivity (Knapp, 2002; Knapp et al.,
2005; Kondragunta et al., 2008; Prados et al., 2007). Other poten-
tial sources of uncertainty in the AOD retrieval are errors in the
cloud-mask algorithm, which would lead to a high bias in the
retrieved AOD. For example, errors in the AOD measurements
due to clear and low-pollution days directly propagate into the
precision with which PM can be estimated and therefore making
this technology insufficiently robust for regulatory applications.

From the epidemiological and exposure assessment point of
view, it is of high importance to have information about the
spatial variability of the exposures. Because the GOES data
can be used to reasonably predict the spatial patterns of PM2.5

concentrations in the New England domain, it is possible to
expand the geographic area from that used by existing epide-
miological studies. Furthermore, many population exposure
assessment studies have relied on city-average concentrations
measured at central ground monitors. However, a city-average
exposure ignores intraurban exposure contrasts and therefore
might underestimate the magnitude of the association between
PM2.5 and health outcomes. Therefore, if spatially resolved data

Figure 6. Spatial variability in PM2.5 levels in the study region. Note that PM2.5 levels are expressed as differences between grid-specific predicted and regional PM2.5

concentrations (µg m�3).
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are predicted realistically, they should be superior to the existing
standard data collected from one or several sites.

There are two main areas in which AOD retrievals can be
improved. The first relates to spatial resolution of currently exist-
ing products, which is too coarse (e.g., 10 � 10 km for MODIS
and 4� 4 km for GOES). This limits our ability to investigate the
spatial patterns of urban air quality, such as examining exposures
in areas with high traffic. Future releases of higher spatial resolu-
tion of MODIS AOD retrievals (1 � 1 km) may address this
limitation in part. In a recent paper, Kloog et al. (2011) applied
day-specific adjustments of 10� 10 kmMODIS AOD data using
ground PM2.5 measurements and incorporated in the same model
commonly used Land Use (LU) variables and meteorological
variables. This made it possible to estimate the effect of traffic,
elevation, or population on PM2.5 concentrations by combining
AOD and LU data. A second improvement can be achieved by
increasing the retrieval accuracy in determining the microphysical
and optical properties of the aerosols, which would make the
retrieval of AOD or extinction more robust. In this regard, hyper-
spectral satellite instruments (hundreds of wavelengths) have the
ability to substantially increase the accuracy in estimation of
aerosol size, single scattering albedo, and indices of refraction.

In summary, in this paper we have clearly demonstrated how
AOD can be used reliably to predict daily PM2.5 mass concentra-
tions, providing determination of their spatial and temporal
variability. Promising results are found by adjusting for daily
variability in the AOD-PM2.5 relationship, without the need to
account for a wide variety of individual additional parameters.
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