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P. 0. Box 37100, Phoenix, Arizona 85069, USA 

sSchool of Environmental Studies and Department of Geography 
Queen's University, Kingston, Ontario, K7L 3N6, Canada 
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Abstract 
A major goal of landscape ecology is to understand the formation, dynamics, and maintenance of spatial heteroge- 
neity. Spatial heterogeneity is the most fundamental characteristic of all landscapes, and scale multiplicity is 
inherent in spatial heterogeneity. Thus, multiscale analysis is imperative for understanding the structure, func- 
tion and dynamics of landscapes. Although a number of methods have been used for multiscale analysis in land- 
scape ecology since the 1980s, the effectiveness of many of them, including some commonly used ones, is not clear 
or questionable. In this paper, we discuss two approaches to multiscale analysis of landscape heterogeneity: the 
direct and indirect approaches. We will focus on scale variance and semivariance methods in the first approach 
and 17 landscape metrics in the second. The results show that scale variance is potentially a powerful method to 
detect and describe multiple-scale structures of landscapes, while semivariance analysis may often fail to do so 
especially if landscape variability is dominant a t  broad scales over fine scales. Landscape metrics respond to 
changing grain size rather differently, and these changes are reflective of the modifiable areal unit problem as well 
as multiple-scale structures in landscape pattern. Interestingly, some metrics (e.g., the number of patches, patch 
density, total edge, edge density, mean patch size, patch size coefficient of variation) exhibit consistent, predictable 
patterns over a wide range of grain sizes, whereas others (e.g., patch diversity, contagion, landscape fractal dimen- 
sion) have nonlinear response curves. The two approaches to multiple-scale analysis are complementary, and their 
pros and cons still need to be further investigated systematically. 

I. INTRODUCTION 

Spatial heterogeneity is ubiquitous in nature across 
all scales, and its formation and interactions with eco- 
logical processes are the central issue in landscape 
ecology. It is intriguing, however, to note that the spa- 
tial dimension has long been ignored or purposefully 
avoided in ecology given that all ecological phenom- 
ena take place in spatially heterogeneous environ- 
ments and that the relationship between organisms 
and their environment is the very subject of ecology. 
This ignorance has had much to do with the back- 
ground assumption of balance of nature and the tra- 
ditional equilibrium paradigm in ecology (Wu and 
Loucks 1995). Besides, several reasons are attribut- 
able to the slow progress in spatial ecology, i.e., the 
spatially explicit study of the interactions between 
pattern and process in ecological systems. 

The first is the lack of recognition of the importance 
of the interactions between space and other factors 
that  together give rise to ecological patterns or pro- 
cesses. Although plant ecologists have long been in- 
terested in the geographical distribution of commu- 

nities since the 1800s, the interactions between space 
and ecological processes have not been well studied. 
It was not until the 1980s that  the interaction among 
pattern, process and scale began to occupy a central 
place in ecological studies, especially, with develop- 
ments in patch dynamics and hierarchy theory 
(O'Neill et al. 1986, Levin 1992, Wu and Levin 1994, 
Wu and Loucks 1995). The second reason concerns 
the lack of effective statistical and modeling methods 
for studying spatial phenomena. Many, if not most, 
statistical methods traditionally used in ecological 
research assume the independence of the observations. 
Spatial autocorrelation and spatial dependence, how- 
ever, are extremely common for ecological variables 
(Legendre 1993), which violate this fundamental as- 
sumption, thus impairing methods that are based on 
it. Although there are ways of removing spatiaI struc- 
ture in data, doing so may not be ecologically sensible 
if space is considered an integral part of ecological 
phenomena. Only in recent years, new methods in 
spatial statistics (particularly geostatistics) began to 
be introduced in ecology to alleviate this problem (e.g., 
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which mag be caused by different processes, and thus Legendre and Fortin 1989, Robertson 1987, Rossi et 

al. 1992, Legendre 1993). 

The third reason has to do with the insufficient ca- 
pacity of computers. Spatial analysis usually requires 
enormous memory space, high computing speed, and 
complex software development. All of these have been 
limiting factors in much of the history of ecology as 
well as statistics. Fortunately, these problems are now 
greatly eased with rapid advances in computer tech- 
nologies, including the availability of GIS. The fourth 
reason involves problems arising from data aggrega- 
tion, which often lead to error propagation and con- 
troversial results. Ecological studies frequently use 
area-based information, derived from field surveys, 
aerial photography, or remote sensing sources. The 
boundaries of the areal units, however, are usually 
arbitrary. As Greig-Smith (1983) pointed out, there is 
a n  “element of subjectivity in sampling procedure be- 
cause the boundaries within which a set of samples is 
taken are fixed by the ecologist on the basis of his 
judgment of what can suitably be described as  one 
unit for the purpose a t  hand.” The arbitrariness in 
the definition of areal units can affect the results of a 
number of statistical analyses. This problem has been 
known as the modifiable areal unit problem (MAUP) 
in the geographical literature (Openshaw 1984), and 
has recently been studied in the context of landscape 
ecology (Wu and Jelinski 1995, Jelinski and Wu 1996). 
MAUP consists of two closely related aspects: the scale 
problem and the zoning problem. The scale problem 
concerns changes in the results of spatial analysis with 
changing scale (usually grain size), whereas the zon- 
ing problem results from the variations of the results 
of spatial analysis due to  different zoning systems or 
spatial configurations of areal units at the same scale. 
The studies of MAUP have shown that a wide variety 
of spatial analyses and simulation models are suscep- 
tible to both scale and zoning problems (Jelinski and 
Wu 1996, Marceau 1999). As a result, the composi- 
tion of a landscape (e.g., patches, gaps, edges, and cor- 
ridors) may also vary with changing grain size and 
extent. 

To understand the dynamics of patterns and processes 
and their interactions in a heterogeneous landscape, 
one must be able to accurately quantify the spatial 
pattern and its temporal changes of the landscape. 
Recent studies have shown that  one of the most im- 
portant and universal characteristics of spatial het- 
erogeneity is its scale multiplicity in space (e.g., Miller 
1978, Kolasa and Pickett 1991, Wu and Loucks 1995, 
Cullinan et  al. 1997, Werner 1999). This scale multi- 
plicity of landscapes has several important ecological 
implications: (1) landscapes may be, though not nec- 
essarily, hierarchically structured; (2) landscapes ex- 
hibit distinctive spatial patterns at different scales 

the scale of observation significantly influences what 
is to be observed; (3) understanding landscape func- 
tioning requires a multiple-scale characterization of 
spatial pattern and processes, and single-scale descrip- 
tions are doomed to be partial and misleading; and 
(4) models developed a t  one particular scale are not 
likely to apply at other scales, thus we need to either 
link models developed a t  different scales, or develop 
multiple-scaled or hierarchically structured models. 

The process of extrapolating or translating informa- 
tion from one scale to another, scaling, undoubtedly is 
a fundamental challenge in both theory and practice 
across all earth sciences. In particular, scaling is es- 
sential for addressing a wide range of ecological and 
environmental problems concerning biodiversity loss 
and global change in part because most ecological stud- 
ies to date have been carried out at very local scales 
in both time and space (van Gardingen et  al. 1997, 
Wu 1999). Scaling often is a difficult task due prima- 
rily to landscape heterogeneity and nonlinearity, and 
understanding the scale multiplicity in pattern and 
process is a key to the success of scaling (Wu 1999). 

This paper, therefore, discusses two approaches to 
multiscale analysis of landscape pattern: the direct 
and indirect approaches. Specifically, we demonstrate 
how to use scale variance analysis and landscape 
metrics as methods for detecting and describing mul- 
tiple-scale or hierarchical structures in landscapes. 
Through a series of analyses, we address several spe- 
cific questions, including: Is scale variance effective 
in detecting multiple-scale patterns? How does it com- 
pare with semivariance? How do landscape metrics 
change over a broad range of grain sizes? Are these 
changes predictable? Which landscape indices are 
sensitive to multiple-scale structures? 

11. TWO APPROACHES TO MULTISCALE 
ANALYSES 

To quantify multiple-scale characteristics of land- 
scapes, multiscale or hierarchical approaches must be 
employed. While a hierarchical approach is by defini- 
tion multiple-scale, a multiple-scale approach is not 
necessarily hierarchical in the sense of the nested hi- 
erarchy (Wu 1999). I t  is worth noting that the term, 
“scale”, here is used to denote the grain size and ex- 
tent of a data set, not necessarily corresponding to 
the “characteristic scale” of landscape pattern or pro- 
cesses. We may distinguish between two general ap- 
proaches to multiscale analyses: (1) t h e  direct 
multiscale approach that uses inherently multiple- 
scale methods, and (2) the indirect multiscale approach 
that uses single-scale methods repeatedly at differ- 
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ent scales. Frequently used multi-scale methods in 
landscape ecology include semivariance analysis 
(Robertson and Gross 1994, Burrough 1995), wavelet 
analysis (Bradshaw and Spies 1992, Saunders et al. 
1998), spectral analysis (Platt and Denman 1975, 
Ripley 1978), fractal analysis (Krummel 1987, Milne 
1991, Nikora et al. 1999), lacunarity analysis (Plotnick 
et al. 1993, Henebry and Kux 1995), and blocking quad- 
rat variance analysis (Greig-Smith 1983, Dale 1999). 
All these methods contain multiple-scale components 
in their mathematical formulation or procedures, and 
thus are either hierarchical or multiscaled. 

On the other hand, the indirect approach to multiscale 
analyses can use methods that are designed for single- 
scale analysis, such as the wide variety of landscape 
metrics (e.g., diversity, contagion, perimeter-area ra- 
tios, spatial autocorrelation indices) as well as statis- 
tical measures (e.g., mean, variance, correlation or 
regression coefficients). The scale multiplicity in the 
indirect approach is realized by resampling the data 
at different scales, albeit grain or extent, and then 
repeatedly computing the metrics or statistical mea- 
sures using the resampled data at  different scales. 
One particular way of resampling data is to system- 
atically aggregate the original fine-resolution data set 
and produce a hierarchically nested data set, which 
leads to a hierarchical analysis using single-scale 
methods. Note that hierarchical analysis does not 
have to assume, apriori, the existence of a hierarchi- 
cal structure in the landscape under study, but can be 
used to detect it. 

In general, there are two related but distinctive goals 
for conducting a multiscale analysis in a landscape 
ecological study. The first is to characterize the mul- 
tiple-scale structure of a landscape. The second is to 
detect or identify “scale breaks” or hierarchical levels 
in the landscape which often can be studied as a spa- 
tially nested hierarchy (O’Neill et al. 1991, Wu and 
Loucks 1995, Wu 1999). In both cases, a better under- 
standing is achieved of how spatial heterogeneity 
changes with scale. However, a description of land- 
scape pattern at  different scales may be necessary or 
desirable even if scale breaks do not exist or the land- 
scape is not hierarchical. On the other hand, scale 
breaks often lead to the identification of characteris- 
tic scales of patterns which may frequently facilitate 
understanding underlying processes. A series of meth- 
ods for analyzing landscape heterogeneity have been 
reviewed recently (e.g., Turner et al. 1991, Burrough 
1995, Gustafson 1998, Dale 1999, Fortin 1999). In the 
following, we demonstrate two multiscale approaches 
with specific examples. In particular, we focus on the 
use of scale variance analysis and several landscape 
metrics as they are used in multiscale analysis. 

111. MULTISCALE ANALYSES WITH SCALE 
VARIANCE 

Scale variance analysis is a hierarchical analysis that 
was first developed by Moellering and Tobler (1972). 
The initial goal of the method was to determine the 
relative variability at  each level in a known nested 
hierarchy, and to evaluate each level’s relative, inde- 
pendent contribution to the total variability of the 
whole system. However, the use of scale variance 
analysis does not necessarily require or even assume 
the existence of a nested hierarchy in the landscape 
under study. To conduct scale variance analysis, one 
only needs to systematically aggregate spatial data 
by increasing grain size progressively so that a nested 
data hierarchy is formed (see Figure 1). Each grain 
size is termed a “scale level” (Moellering and Tobler 
1972). Most spatial data can be reconstructed hierar- 
chically by resampling, then scale variance analysis 
can be applied (Moellering and  Tobler 1972, 
Townshend and Justice 1990, Wu et al. 1994, Barnsley 
et al. 1997). 

The statistical model of scale variance can be ex- 
pressed as: 

.X$...; =p+a;+p ,+  yijk+“‘+oiik.. .~ 

where Xjk...zis the value of a spatial unit (e.g., a pixel) 
at the hierarchical level that corresponds to the fin- 
est grain size (scale level 6 in Figure l), p the grand 
mean over the entire data set, a, the effect of the a 
level (scale level 1 in Figure l), pij the effect of the p 
level (scale level 2 in Figure l), yijk the effect of the y 
level (scale level 3 in Figure l), and aijk...z the effect of 
o level (scale level 6 in Figure 1). 

From the above model, the total variance of the land- 
scape can be partitioned hierarchically at  different 
grain sizes. Moellering and Tobler (1972) derived the 
scale variance components for a 3-level (a, p, y) hier- 
archy as follows. First, the total variation of the sys- 
tem is expressed as the total sum of squares: 

where I is the number of a level units, Ji is the num- 
ber of b level units in each ith a level unit, and K is 
the number of y level units in each ijth p level unig! 

The total sum of squares is partitioned into different 
parts that are attributable to the various scale levels 
(here a, p, y), so that 
SSTom, = ss, + ssp + ssy . (3) 

SS,, SS,, and SS., are calculated based on the follow- 
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1x8 Level 3 When dealing with regular lattice data sets as shown 
in Figure 1 (Moellering and Tobler’s “even case”), the 
scale variance components are simply: 

Level 2 2x8 SV, = MSa I JK 
SVp = MS,, I K 
SV, = MS, 

4x8 Level i 

Scale variance analysis starts with the construction 
of nested data hierarchies (Figure l), and then the 
above equations are used to compute the total sum of 
squares, partitioned sums of squares, and scale vari- 
ance at each scale level. Finally, scale variance or the 
percent total sum of squares is plotted against scale 
levels, resulting in the scale variance graph, from 
which one can readily visualize the presence of peaks 
or the lack of them. A peak implies that high vari- 
ability occurs at the corresponding scale level (grain 
size), which is indicative .of the average size of domi- 
nant patches in the landscape. The height of the peak 
reflects the relative contribution of that particular 
scale level to the total variability of the landscape. 

8x8 Level 0 

- 
Zoning Alternatives 

Figure 1. Illustration of spatial aggregation that 
leads to a spatially nested hierarchy of data. Col- 
umns show that the data set becomes coarser and 
coarser as grain size increases, whereas rows dem- 
onstrate that at each grain size there are multiple 
ways to aggregate the same number of basic spatial 
units (BSUs) - the pixels in the original fine-resolu- 
tion data set. The numbers in the figure denote grain 
sizes (the number of rows x the number of columns 
of BSUs). 

Let’s take a look at two simple examples of how scale 
variance works, and compare it with semivariance 
analysis. Figure 2 shows two artificially constructed 
“landscapes” with multiple-scale patterns in which 
patches of different sizes form spatially nested hier- 
archies, i.e., larger patches are composed of smaller 
patches. The left column in Figure 2 is the pictorial 
version (for facilitating visualization) of the numeri- 
cal map on the right (actually used in the following 
analyses). Can scale variance reveal this hierarchi- 
cal structure? Is it more effective than, say, the simple 
variance, spatial autocorrelation, and semivariance 
analysis? 

ing formulas: 

(4) 

I J K.,  

;=I j = [  k = l  

Dividing the partitioned sums of squares by their re- 
spective degrees of freedom results in the correspond- 
ing mean square estimates, i.e.: 

Figure 3 shows that scale variance is indeed able to 
correctly and clearly identify three peaks correspond- 
ing to the three patch sizes (i.e., 1x1, 8x8 and 16x16 
BSUs, where BSU stands for the basic spatial unit 
that is defined as the pixel in the original data set). 
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Figure 2. Two artificially constructed landscapes that exhibit multiple-scale patterns. The left column is the 
pictorial version of the numerical map on the right. 

Simple variance exhibits a staircase curve, also in- 
dicative of a hierarchical structure in the landscape, 
but not as conspicuous as scale variance (especially 
for the scale level of 16x16 BSUs). The graph of spa- 
tial autocorrelation against scale levels (similar to, but 
not the same as, a correlogram) also indicates a mul- 
tiple-scale structure, but is not as easy to interpret as 
scale variance. Results for the second landscape (pat- 
tern 2) for the three methods further support the above 
observations. Here, three zoning alternatives are used, 
and in each case scale variance unambiguously re- 
veals two or three hierarchical levels in the data set. 
Note that changing zoning systems affects the results 
of all three methods, which is part of MAUP (Jelinski 
and Wu 1996). At the same time, by knowing how the 

zones are oriented during the data aggregation, scale 
variance can provide information on the directional- 
ity of dominant elongated patches (see pattern 2 in 
Figure 2 and the scale variance graph for zoning sys- 
tem 2 in Figure 4). 

Figure 5 summarizes the results of a semivariance 
analysis of these two contrived landscapes. The graph 
at the top in each column shows that semivariance 
exhibits cyclic fluctuations, indicative of the periodic 
pattern in the two landscapes. While this periodicity 
is not specious, it is difficult to discern whether there 
exist hierarchical scales in these landscapes and how 
many from these semivariograms. We also divided 
the landscapes into four horizontal transects (8x32 
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Figure 3. Scale variance analysis of the artificially constructed landscape (pattern 1) in Figure 2. Variance 
and spatial autocorrelation indices are also provided for comparison. The horizontal axis for all three graphs 
is scale level, representing a hierarchy of grain sizes progressively increasing from 1 by 1 to 16 by 32 BSUs. 

pixels each), with transect 1 at the top and transect 4 
at the bottom. The semivariogram for the top transect 
in each landscape seems to indicate a scale break at 
the lag of 8 pixels, whereas the other three transects 
exhibit rather similar semivariograms without obvi- 
ous scale breaks. In all cases, semivariance analysis 
does not seem to be able to clearly identify the hierar- 
chical levels that apparently exist in the two land- 
scapes. We further compare scale variance with 
semivariance analysis using a real landscape data set 
(a map of NDVI, normalized difference vegetation in- 
dex), with 300x300 pixels each of which has a 30 m 
linear dimension. The landscape is a boreal forest 
region, composed of a large number of patches of dif- 
ferent vegetation types that vary greatly in size. In 
Figure 6, scale variance and the percent total sum of 
squares (top) both show several peaks, indicative of 
the existence of a multiple-scale structure in the land- 
scape. However, for real landscapes scale variance 
does not drop to near zero between scale levels, as for 

the contrived landscapes, because patch sizes may 
vary continuously, although not evenly; i.e., the nested 
patch hierarchies are not “neatly” organized. The vari- 
ance plot (bottom) seems to corroborate this result, 
but is much less conspicuous. On the other hand, the 
semivariogram shows that semivariance increases 
rapidly initially with increasing lags and then gradu- 
ally levels off (Figure 7). The multiscale structure of 
the landscape does not become discernable from ei- 
ther the semivariogram for the entire landscape (top) 
or for the three transects (bottom three). 

Iv. MULTISCALE ANALYSES WITH PATTERN 
INDICES 

The indirect multiscale analysis is closely related to 
the study of the problem of spatial aggregation in gen- 
eral and MAUP in particular (Wu and Jelinski 1995, 
Jelinski and Wu 1996). Here we focus on the ques- 
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tion: how different landscape pattern indices respond 
to systematic changes in grain size as  a spatial data 
set is progressively aggregated with its extent kept 
constant. We compute a series of landscape metrics 
using FRAGSTATS (McGarigal and Marks 1995) 
based on a land cover classification map of an  urban- 
rural-desert landscape in Nevada, USA, occupying an 
area of 900 km2. The classification was conducted 
using a 1984 Landsat TM scene. The landscape was 
dominated by different arid vegetation types (e.g., dif- 
ferent types of shrublands and woodlands) as well as 
burned, agricultural, and urban areas. 

In total, seventeen commonly used landscape metrics 
are examined systematically. The total amount of 
edge, number of patches, edge density, and patch den- 
sity all show a remarkably consistent power-law rela- 
tionship with increasing grain size, suggesting that 
these indices can be predicted over a wide range of 
grain sizes with high accuracy (the first four graphs 
in Figure 8). As data become more and more aggre- 

gated, the number of patch types (patch richness) and 
patch diversity (Shannon-Weaver diversity index) both 
decrease monotonically (the two graphs at the bot- 
tom in Figure 8). While the staircase-like decline in 
patch richness is readily understandable, decreasing 
patch diversity is a result of the combined decrease in 
both the number of patch types and the evenness of 
each type. Comparing patch richness and diversity 
graphs reveals that the initial rapid decrease in di- 
versity is due to decreasing evenness, whereas later 
changes in diversity closely resemble those in patch 
richness. The exact pattern of patch richness and di- 
versity with increasing grain size is determined sig- 
nificantly by the details of landscape heterogeneity 
(Turner et al. 1989, Wickham and Riitters 1995, Wu 
et al. 1997). 

Contagion index has been widely used to measure the 
extent to which patches of the same type are clumped 
(O’Neill et al. 1988, Li and Reynolds 1993, Riitters et 
al. 1996). One may expect that contagion should in- 
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columns represent three different zoning alternatives. The horizontal axis for all graphs is scale level, repre- 
senting a nested hierarchy of grain sizes. 
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crease monotonically with increasing grain size sim- 
ply because of the progressive agglomeration of 
smaller patches into larger ones of the same type. 
However, this is not the case here. Figure 9 shows 
that contagion increases up to a certain grain size and 
then begins to decline. In fact, for a given spatial pat- 
tern a finer grain size renders a larger contagion 
(Frohn 1998). Because several factors, including patch 
diversity, spatial pattern, and grain size, together af- 
fect the value of contagion (see Li and Reynolds 1993, 
Riitters et al. 1996), it is difficult, if meaningful, to 
interpret its response curve. Square pixel index 

(Frohn 1998) and landscape shape index are both de- 
rived from the perimeter-area ratio. As grain size in- 
creases, landscape shape index decreases rapidly fol- 
lowing a power law, whereas square pixel, a normal- 
ized shape index, decreases linearly (Figure 9). In 
contrast with the assertions by Frohn (1998), the in- 
sensitivity of square pixel to changing grain size sug- 
gests that it may not be a good measure for detecting 
changes in landscape shape complexity across scales 
or along a gradient (also see Wu in review). The fractal 
dimension of the landscape remains constant over a 
range of grain sizes, which may suggest self-similar- 
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Figure 6. Scale variance graph (top) showing the 
multiple-scale structure of a boreal forest landscape 
in northern Canada. Also plotted along with scale 
variance is the percent total sum of squares. Vari- 
ance at each scale level is also shown for comparison 
(bottom). 

ity, and then begins to fluctuate after grain size ex- 
ceeds 50 pixels on a side. Together with contagion, 
the landscape fractal graph may be indicative of dif- 
ferent landscape features emerging over coarse grain 
sizes. These features are more than likely “spatial” 
because the non-spatial measures, like landscape 
shape index and square pixel index, do not pick up 
this information (Figure 9). 

Figure 10 shows the response curves of mean patch 
size (MPS), patch size coefficient of variation (PSCV), 
mean patch fractal dimension (MPFD), area-weighted 
mean patch fractal dimension (AWMFD), patch size 
standard deviation (PSSD), mean patch shape index 
(MSI), and area-weighted mean patch shape index 
(AWMSI). It is trivial to speculate that MPS will in- 
crease with increasing grain size in any landscape. 
Yet, it is interesting to note that the increase in MPS 
is readily predictable and that its pattern seems to 
indicate multiple-scale patterns existing at grain sizes 
of about 60x60 and 80x80 pixels. This scale multiplic- 
ity in landscape pattern again is noticeable in the re- 
sponse curves of AWMFD, PSSD, MSI, and AWMSI 
(Figure 10). While patch size standard deviation in- 
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Figure 7. Semivariogram for a boreal forest landscape 
in northern Canada. The top graph is for the entire 
data set (300 x 300 pixels), and the lower three graphs 
are for three consecutive west-east transects (each 100 
x 300 pixels) from north to south, respectively. 

creases almost linearly with increasing grain size, 
patch size coefficient of variation, ie. ,  patch size stan- 
dard deviation divided by mean patch size, decreases 
again in a power-law fashion (Figure 10). Mean patch 
fractal dimension does not change notably with grain 
size, but area-weighted mean patch fractal dimension 
demonstrates a rapid nonlinear decline which is simi- 
lar to that of area-weighted mean patch shape index. 
Also noticeable is mean patch shape index which 
seems sensitive to changing grain size, and thus may 
be used together with MPS, AWMFD, PSSD, and 
AWMSI to detect, in addition to describing, multiscale 
patterns in landscapes. 
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Figure 8. Response curves of landscape metrics to progressively increasing grain size: total edge, number of 
patches, edge density, patch density, patch richness, and Shannon diversity index. 

V. DISCUSSION AND CONCLUSIONS 

The relationship between pattern and scale is ex- 
tremely intriguing and important in ecology (Levin 
1992), but remains elusive even when pattern is re- 
stricted to spatial pattern and scale to grain and ex- 
tent. Detecting, describing and understanding the 
multiple-scale structure of spatial heterogeneity are 
essential in landscape ecology, or more appropriately, 
spatial ecology. Although many methods have been 
used to achieve this goal in landscape ecology since 
the 1980s, the effectiveness of even the most widely 
used methods (e.g., correlograms, variograms) remains 
unclear or questionable. 

In this paper, we outline two complementary, yet par- 
allel approaches to multiscale analysis of landscape 
pattern: the direct approach that uses multiscale sta- 
tistical methods and the indirect approach that usu- 
ally employs simple synoptic pattern indices with hi- 
erarchically resampled data. In particular, we illus- 
trate the use of scale variance analysis with contrived 
landscape data as well as a real landscape data set. 
Semivariance analysis and spatial autocorrelation 
analysis are used for the purpose of comparison. The 
results show that scale variance analysis seems to be 
a more robust method for detecting and describing 
multiple-scale or hierarchical structures of landscapes. 
Townshend and Justice (1988,1990) have shown that 
scale variance analysis is just as powerful as compli- 
cated methods such as  spectral analysis, but much 
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simpler in computation and much more transparent 
in interpretation. Although semivariance analysis has 
been claimed as one of the most effective methods for 
detecting the multi-scale or hierarchical structure of 
landscapes, our results here suggest that this may not 
always be true. In semivariograms of real landscapes, 
fine-scale variability can be "squeezed" by broad-scale 
variability, which makes it less likely for a clearly iden- 
tifiable staircase curve (e.g., Robertson and Gross 
1994) to emerge. Meisel and Turner (1998) also 
pointed out that, although semivariance analysis did 
reveal the hierarchical structure in their artificial 
maps, it is unlikely to detect multiscale patterns in 
real landscapes. 
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The results of our multiscale analysis with seventeen 
commonly used landscape pattern metrics show that 
almost all of them change considerably with increas- 
ing grain size. These changes reflect the notorious 
problem known as MAUP and, at least sometimes, the 
multiple-scale structure in landscape pattern. Some 
metrics (e.g., the number of patches, patch density, 
total edge, edge density, mean patch size, patch size 
coefficient of variation) seem to exhibit consistent 
patterns over a wide range of grain sizes, and thus 
can be predicted accurately with simple regression 
equations. On the other hand, nonlinear response 
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curves are found for other metrics (e.g., patch diver- 
sity, contagion, landscape fractal dimension). It makes 
little sense to characterize landscape pattern with any 
of these indices at a single scale, be it grain or extent. 
While a multiple-scale analysis with several landscape 
metrics across scales is necessary for meaningfully 
describing landscape pattern, doing so can also ren- 
der valuable information on detecting possible scale 
multiplicity in the pattern. 
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All spatial data and all types of spatial analysis carry 
errors of one sort or another (Fotheringham 1989). 
The usefulness of a spatial study may be critically 
affected by the nature and the intrinsic meaningful- 
ness of the objects or units in the data set (Openshaw 
1984). The multiple-scale analyses discussed here are 
intimately related to the problem of spatial aggrega- 
tion in statistics and human geography in general. 
Specifically, MAUP may have significant influences 
on the detection of scale, the determination of rela- 
tionships among organizational levels, and the trans- 
lation of information across scales. Indeed, the modi- 
fiable areal unit problem suggests that results of many 
past ecological studies based on spatially aggregated 
data may be flawed or seriously biased and, there- 
fore, should be reexamined. There is apparently a 
lack of awareness of the vast literature on MAUP in 
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the ecology community, and ecologists should make a 
conscious effort to  integrate into their own under- 
standing of pattern and scale the valuable informa- 
tion on the issue of scale in geography and social sci- 
ences (Marceau 1999, Wu and Qi this issue). 

To understand the role of scale in studying spatial 
heterogeneity, three related but distinctive groups of 
research questions must be adequately addressed: (1) 
How does changing the scale of observation or analy- 
sis affect research results and their interpretation, and 
are these changes predictable? (2) Are ecological sys- 
tems multiple-scaled or hierarchically structured, and 
if so, how do we identify and interpret characteristic 
scales in relation to patterns and processes in a land- 

scape? (3) What scaling laws exist for different pat- 
terns and processes in landscapes that are heteroge- 
neous in various ways? In the case of no simple and 
mathematically tractable scaling laws, how do we de- 
velop systematic procedures to guide the translation 
or extrapolation of information from one scale to  an- 
other? The results of our study shed light on these 
issues. However, these research questions may re- 
main among the most essential and the most chal- 
lenging in landscape ecology for a long time, and full 
answers to them dictate further continuing theoreti- 
cal and empirical studies. 
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