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TECHNICAL PAPER

ABSTRACT
Three-dimensional air quality models (AQMs) represent
the most powerful tool to follow the dynamics of air
pollutants at urban and regional scales. Current AQMs
can account for the complex interactions between gas-
phase chemistry, aerosol growth, cloud and scavenging
processes, and transport. However, errors in model ap-
plications still exist due in part to limitations in the
models themselves and in part to uncertainties in model
inputs. Four-dimensional data assimilation (FDDA) can
be used as a top-down tool to validate several of the
model inputs, including emissions inventories, based on
ambient measurements. Previously, this FDDA technique
was used to estimate adjustments in the strength and
composition of emissions of gas-phase primary species
and O3 precursors.

In this paper, we present an extension to the FDDA
technique to incorporate the analysis of particulate mat-
ter (PM) and its precursors. The FDDA approach consists
of an iterative optimization procedure in which an AQM
is coupled to an inverse model, and adjusting the emissions
minimizes the difference between ambient measurements

and model-derived concentrations. Here, the FDDA tech-
nique was applied to two episodes, with the modeling do-
main covering the eastern United States, to derive emission
adjustments of domainwide sources of NOx, volatile organic
compounds (VOCs), CO, SO2, NH3, and fine organic aerosol
emissions. Ambient measurements used include gas-phase
inorganic and organic species and speciated fine PM. Re-
sults for the base-case inventories used here indicate that
emissions of SO2 and CO appear to be estimated reasonably
well (requiring minor revisions), while emissions of NOx,
VOC, NH3, and organic PM with aerodynamic diameter less
than 2.5 µm (PM2.5) require more significant revision.

INTRODUCTION
As part of the U.S. Environmental Protection Agency’s
(EPA) reassessment of the National Ambient Air Quality
Standards (NAAQS), revised standards for O3 and particu-
late matter (PM) were promulgated in 1997. The standard
for O3 was modified, but perhaps the greatest impact to
the regulated (and scientific) community came from the
introduction of a new standard for PM with aerodynamic
diameter less than 2.5 µm (PM2.5). Even though the new
PM2.5 standard was remanded in 1999, it is not unlikely
that a PM2.5 standard will be part of the NAAQS in the
near future, and visibility requirements impact PM2.5 con-
trols. The concern of air quality managers on the PM2.5

standard is based on our poor understanding of this
pollutant’s emissions, physical and chemical dynamics in
the atmosphere, and fate. The problem in understanding
PM2.5 dynamics relies in the complexity of the mecha-
nisms by which it is formed and evolves in the atmo-
sphere. PM2.5 can have a primary pollutant component
(e.g., emission of fine particles from combustion), but it
is also generated in the atmosphere through gas-to-par-
ticle conversion processes. As part of an effort to better
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IMPLICATIONS
Complex transport-chemistry air quality models are rou-
tinely used to investigate control strategy scenarios for
reducing ground-level O3, and models capable of follow-
ing fine PM dynamics are increasingly being used. How-
ever, if such models employ a flawed emissions inven-
tory, impact attribution analyses would suggest limited or
improper conclusions. FDDA is an additional tool that
modelers can use to assess the soundness of emissions
inventories and to identify possible problems in the emis-
sions inventory development process.
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characterize PM2.5 levels in the atmosphere, instruments
with the capabilities of measuring mass concentrations
and chemical composition of PM2.5 are being deployed,
joining statewide ambient monitoring networks and the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) monitors in various Class I areas. However, if
a better understanding of the complex dynamics of PM
in the atmosphere is to be attained, mathematical mod-
els and their inputs should also be improved.

Source-receptor relationships of PM in different loca-
tions (urban and regional) have been studied using em-
pirical statistical models commonly known as “receptor
models.”1 These models have proven to be valuable tools
when applied to the inert portion of PM, and to some
extent to secondary PM. Given that a significant fraction
of PM2.5 is secondary in origin, at least in some regions
like the southeastern United States,2 additional tools that
describe the dynamics of aerosols in airsheds have been
developed. Of particular interest are the extensions being
made to current 3-dimensional Eulerian air quality mod-
els (AQMs) to include descriptions for photochemical
smog and aerosols in the same model. These models rep-
resent the state-of-the-science in gas-phase and PM atmo-
spheric modeling of urban and regional air pollution.3

However, our understanding of the physical and chemi-
cal processes that govern aerosol dynamics still has limi-
tations (as does that for O3 and its precursors). Sources of
uncertainty in model calculations include transport pro-
cesses, numerical integration schemes, representation of
chemical and thermodynamic mechanisms, errors in
meteorological fields, definition of initial and boundary
conditions, and emissions inventories.4 This last compo-
nent is viewed by some as the major source of uncertainty
going into an application of an AQM.5,6

Different studies have suggested the use of inverse
modeling as a top-down emissions inventory analysis tool
for urban and regional domains.7-11 This approach per-
mits identifying plausible flaws in emissions strengths and
misinventoried sources, and quantifies biases and uncer-
tainties in the inventory.3 In essence, inverse modeling
incorporates into the traditional modeling effort infor-
mation provided by ambient measurements. In particu-
lar, Mendoza-Dominguez and Russell10 have developed an
iterative 4-dimensional data assimilation (FDDA) approach
for 3-dimensional AQMs that can be used for the purpose
of emissions inventory validation. This FDDA technique
has been applied to suggest adjustments in gas-phase
emissions for the Atlanta nonattainment area.11 In this
paper, we present an extension to the same FDDA tech-
nique that also allows estimating adjustments for aerosol
and aerosol precursor emissions. In addition, we apply
the FDDA technique to analyze the emissions inventory
for an area that covers the eastern United States and is

centered around the southern Appalachian Mountains.
Sources analyzed include domainwide categories of NOx,
volatile organic compounds (VOCs), CO, SO2, NH3, and
fine organic aerosol emissions; ambient measurements
include gas-phase inorganic and organic species and spe-
ciated PM2.5. Emission scaling factors for two different
modeling episodes (July 9–19, 1995, and May 22–30, 1995)
are reported.

MODELING FRAMEWORK
The FDDA approach used here consists of a hybrid mod-
eling system that combines a forward and an inverse
model. The forward model provides simulated concen-
tration fields of pollutants, and the response of those pol-
lutant concentrations to changes in emissions. The inverse
model estimates the changes in emissions necessary to
bring simulated concentrations into closer agreement with
actual observations. Given that the processes that govern
pollutant dynamics in the atmosphere are nonlinear, it-
eration is used to get a stable response in the adjusted
emissions. In this iterative process, the emission adjust-
ments estimated by a given inverse model application are
fed back to the forward model to obtain new fields of
pollutant distribution and response fields to the new
emissions for the subsequent inverse model application.

Mendoza-Dominguez and Russell10 implemented
this approach using the CIT (California/Carnegie Insti-
tute of Technology) airshed model12 as the forward model
and ridge regression as the inverse model.13 The selec-
tion of ridge regression was based in part on its property
of helping convergence in iterative estimation of non-
linear parameters.10 The response of species concentra-
tions due to changes in emissions is computed in an
efficient way using a decoupled direct method (DDM-
3D) sensitivity analysis module.14 Their application dem-
onstrated that three or four iterations are sufficient to
obtain the final emission adjustments. However, a limi-
tation of their application was that the model did not
consider aerosol dynamics.

In this paper, we extend the application of the FDDA
technique to determine aerosol and aerosol precursor
emission adjustments. The AQM (forward model) used
here is unique in that it forms part of an integrated atmo-
spheric modeling system that combines gaseous, aerosol,
and dry and wet deposition processes, incorporating also
a direct sensitivity analysis technique. The major compo-
nents of this modeling system include the Regional At-
mospheric Modeling System (RAMS), version 3a15 for
estimating meteorological fields; the Emission Modeling
System (EMS-95)16 for emissions processing; and the ur-
ban-to-regional multiscale model (URM)17,18 AQM for the
modeling of pollutant transport and chemistry. Given the
highly portable nature of the FDDA technique, the effort
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needed to adjust the technique to use URM as the forward
model from its previous applications using the CIT model
was minimal. In fact, in principle, any AQM can be used
with the FDDA technique as long as it can provide spatially
and temporally varying concentration and sensitivity fields.
Here, the most relevant features of the air quality compo-
nent of the modeling system used are summarized, and the
basis of the FDDA process is highlighted.

AQM
The URM model17,18 is a 3-dimensional Eulerian AQM that
accounts for the transport and chemical transformation of
pollutants in the atmosphere. URM uses a finite element,
variable mesh transport scheme in its horizontal domain
to effectively capture the details of pollution dynamics at
urban and regional scales without being computationally
intensive.19 Horizontal advection and horizontal diffusion
are solved simultaneously using the 2-dimensional Stream-
line Upwind Petrov-Galerkin finite element method,17,19

followed by application of a mass conservative diffusion
filter.20 Vertical advection is solved using first-order upwind
differencing, while vertical diffusion is solved using an
implicit finite difference scheme. Both vertical and hori-
zontal diffusion are treated using K-theory. Mass conserva-
tion problems that arise in URM due to using RAMS wind
fields (the two models use slightly different representations
of the conservation equations) are minimized by adjusting
the vertical velocities used by URM.21

URM has the capability of following both gas-phase
and aqueous-phase atmospheric chemistry. Gas-phase re-
actions are modeled using the SAPRC chemical mecha-
nism,22,23 while aqueous-phase chemistry and cloud
processes are based on the reactive scavenging module
(RSM) of Berkowitz et al.24 RSM simulates the time-
dependent chemical kinetic interaction of clouds with the
gas and aerosol species, as well as vertical convective trans-
port within a column of air. Scavenging processes treated
by the module include gas, aerosol, and microphysical
scavenging. Further description of the coupling of RSM
with URM can be found elsewhere.25

URM’s aerosol module is capable of simulating concen-
trations of all major primary and secondary components of
atmospheric PM. The continuous aerosol size distribution is
modeled by a sectional approach. Here, four size bins are
specified.25 The aerosol module simulates mass transfer and
particle growth occurring between the gaseous and aerosol
species during condensation and evaporation, while effects
of nucleation and coagulation are ignored.25

There are three groups of aerosol species that are con-
sidered: inert species, inorganic equilibrium species, and
organic species. Inert species include Mg, K, Ca, elemen-
tal carbon, and a lumped category that includes all other
inert PM species. The Na-NH4

+-Cl–-SO4
2–-NO3

–-H2O system

is used to simulate the inorganic component of the aero-
sol. The physical state and composition of the inorganic
fraction is computed using the thermodynamic equilib-
rium model ISORROPIA.26 The organic aerosol fraction is
represented by a lumped species, which is the sum of vari-
ous condensable organics resulting from the oxidation of
organic gases. The production of these condensable or-
ganic species is based on the organic yields reported by
Pandis et al.27 The formation of condensable organic aero-
sol species is computed in the chemistry module, followed
by the distribution of condensed organic aerosols. Fur-
ther details can be found in Boylan et al.25

Both dry and wet deposition processes are treated by
URM. Removal by wet deposition is based on the param-
eterization in RSM as discussed earlier. Dry deposition is
treated using a three-resistance approach based on the
formulation of Wesely.28 In particular, for aerosol particles,
size-dependent deposition velocities were estimated.25

In addition to estimating pollutant concentrations, URM
can calculate simultaneously their sensitivities to input data
(e.g., emissions or meteorological fields) and model param-
eters (e.g., chemical reaction rate constants or deposition
velocities). URM computes local sensitivity coefficients based
on the direct decoupled method for 3-dimensional models
(DDM-3D).14 Sensitivities for gas-phase species are reported
as ppm per percent change in a given model input or pa-
rameter (e.g., an emission source), while for aerosol species
they are reported as µg/m3 per percent change in the model
input or parameter of interest. The integration of DDM-3D
to the AQM is one of the features that allows fast conver-
gence in the FDDA application.11

FDDA Extension
The FDDA technique integrates a 3-dimensional AQM
(URM in this case), direct sensitivity analysis (DDM-3D),
and a receptor analysis tool (ridge regression) to create a
top-down emissions analysis tool. The objective of this
approach is to estimate the amount emission strengths of
diverse sources would need to be adjusted to minimize
the difference between model-derived concentrations and
actual observations. The inclusion of DDM-3D as part of
the hybrid model makes the technique flexible enough
to incorporate other inputs and parameters as the adjusted
variables (i.e., changes in dry deposition parameters or
initial and boundary conditions that minimize the dis-
crepancy between simulated and observed concentrations
could be estimated). However, for this particular applica-
tion, we have limited the set of adjusted variables to cer-
tain emission source categories, implying that the main
source of uncertainty in this case relies solely in the emis-
sions inventory. We acknowledge that certain processes
simulated, such as the organic yields that are used to de-
rive the organic mass present in the aerosols, can have a
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level of uncertainty similar to (or even greater than) the
emissions. We have not intended to characterize the a
priori uncertainty of each model component and input
of the particular air quality modeling applications inves-
tigated here. The decision to use only emissions as ad-
justed variables is based on the current view that this is
probably the most uncertain component in most air pol-
lution modeling studies.5,6

The mathematical foundation of the FDDA method
has been documented in detail elsewhere.10,11 Briefly, the
forward model (the AQM) provides information to the
inverse model (ridge regression), which feeds back cor-
rected emission estimates to the forward model. Here,
URM (extended with DDM-3D) calculates simulated con-
centration and sensitivity fields in a single execution, and
then these two fields, plus the relevant observations, are
fed to a ridge regression module to estimate emission scal-
ing factors of the emissions inventory used to drive the
URM run. The ridge regression module solves the follow-
ing linear system:

(1)

In eq 1, m represents the unknown vector of emission
scaling factors, d is a vector of the difference between
modeled and measured concentrations, and G is a matrix
of weighted sensitivity coefficients (which indicate how
the modeled concentrations vary as emissions are de-
creased or increased from a given base value). We is a
weighting matrix that incorporates information regard-
ing the uncertainty of the observations into the analysis,
and Wm is an emission penalty matrix calculated based
on the uncertainty in observations and the a priori and a
posteriori uncertainty in the emissions. Wm is a diagonal
matrix, and the magnitude of the terms in the matrix will
indicate how much the emissions will be allowed to
change from their base level. The penalty matrix helps to
both constrain the emission estimates within prescribed
bounds and improve convergence.10 The complete formu-
lation of how the Wm matrix is computed can be found
elsewhere.10,11

The We diagonal matrix is computed as

(2)

Note that in this notation, ωik represents the diagonal el-
ements of the matrix We where the first k elements repre-
sent the k measurements corresponding to species i = 1,
the next k elements represent the observations of the sec-
ond species, and so on. Ni is the number of valid mea-
surements of species i, σik is the standard deviation of the
kth measurement of species i, and ωik

* are additional weight-
ing factors that are only used during the first two iterations

to accelerate convergence.10

Finally, the way the G matrix is computed allows
weighting how primary and secondary species will be used
in the assimilation process. In essence, the sensitivity co-
efficients sik,j (species i sensitivity due to the emissions of
source j at the position and time of the kth observation)
used to assemble the G matrix are multiplied by a scaling
factor, δij. In our previous study,11 the value of the scaling
factor depended on whether species i was directly emit-
ted by source j (in which case δij had a value of 1) or not
(in which case δij was assigned a value of 0.5). This ap-
proach increased the sensitivity of an observed species to
an emission category that emitted that same species, ver-
sus the weight given to other sensitivities (e.g., when ad-
justing for emissions of a NOx source, the sensitivity of
the simulated NO2 concentration to that NOx emission
rate was given more weight than the sensitivity of, for
example, CO to that same NOx emission rate). This ap-
proach had the overall effect of stabilizing the response
of the regression analysis.11

APPLICATION OF THE FDDA APPROACH
Modeling Domain and Grid

The modeling domain covers the eastern half of the United
States and is shown in Figure 1. As noted previously, URM
works with a single grid of variable resolution. The grid
cell dimensions shown correspond to 192, 96, 48, 24, and
12 km with the finest resolution cells over the southern
Appalachian Mountains. This domain is being used by stud-
ies assessing the effects of emission controls on air quality
over the Class I areas around the southern Appalachian
Mountains.25,29 The domain extends from the surface to a

    
m G W G W G W d= +( )−T T

e m e
1

    
ω

σ
ωik

i ik
2 ik= ⋅ ⋅1 1

N
*

Figure 1. Modeling domain and the horizontal multiscale grid structure
used by URM (the outer grids have a resolution of 192 km, while the
innermost cells are 12 × 12 km).
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height of 12,867 m above ground level and is divided into
seven vertical layers. The thickness of each layer from the
ground to the top of the domain is 19, 43, 432, 999, 1779,
3588, and 6007 m, respectively.

URM Inputs
Meteorological Fields.  A modified version of the RAMS ver-
sion 3a15 was used to generate the meteorological fields
required by URM.29 RAMS was run with a system of three
nested grids in a nonhydrostatic mode with cloud and
rainwater modules activated (ice microphysics was not
enabled).29 The nested grid structure used in RAMS con-
sisted of 96-, 24-, and 12-km-resolution grids, and the
model was run under a one-way nesting mode. Some
modifications in the version of RAMS used included cu-
mulus parameterization and planetary boundary layer
calculations (surface flux calculations), and are discussed
by Odman et al.29 The main source of data for initializing
the RAMS runs and for nudging was the National Center
for Environmental Prediction/National Centers for Atmo-
spheric Research reanalysis data.30

Emissions Inventory.  The EMS-95 framework16 was used
to generate gridded, time varying, and speciated emis-
sion inputs to be used by URM.29 Emissions were gener-
ated for four major source categories: mobile,
stationary, biogenic, and elevated point sources.
Mobile emissions were estimated from the EPA
MOBILE5b model. Biogenic emissions were ob-
tained using the second version of the EPA Bio-
genic Emissions Inventory System (BEIS2).31 The
point source inventory includes day-specific emis-
sions from power plants operating in the eastern
United States. This would suggest that point-
source SO2 emissions should be reasonably well
estimated. Meteorological model results obtained
from the RAMS applications were also used to
generate spatial and diurnal patterns of mobile
and biogenic emissions.

Initial and Boundary Conditions.  Initial (IC) and
boundary conditions (BC) for gas-phase species
were derived using data from the Aerometric In-
formation Retrieval System (AIRS), while measure-
ments from the IMPROVE network were used for
defining speciated aerosol ICs/BCs.25,29 IC/BCs for
O3, CO, and VOCs were generated by interpolat-
ing measurements to the modeling grid using
Dirichlet tessellation (triangulated irregular net-
work interpolation). In contrast, SO2 and NOx ob-
servations were interpolated using an inverse
concentration, distance squared weighting of the
natural logarithm of the concentrations to define

their ICs/BCs. This minimizes and localizes the impact of
locally high SO2 and NOx observations.29 The values at
the top of the domain were set to free troposphere values,
and the values at intermediate layers were estimated by
linear interpolation from the ground-level values to the
top of the domain.

Episodes and FDDA Applications
Two high O3/aerosol episodes were considered for the
application of the FDDA technique: July 9–19, 1995,
and May 22–29, 1995. The first 2 days in each episode
were used as ramp-up days for the model simulation.
Twenty observed species were assimilated for the July
1995 episode, and 17 for the May 1995 episode (Table
1). AIRS and IMPROVE databases were accessed to ob-
tain the inorganic gas-phase species and aerosol spe-
cies measurements, respectively. Photochemical
assessment monitoring stations (PAMS) data were used
to include VOC measurements. Adjustments for eight
domainwide emission sources were estimated: anthro-
pogenic area source NOx (NOx[A]), elevated point source
NOx (NOx[P]), anthropogenic area source VOC
(VOC[A]), biogenic VOC (VOC[B]), total SO2 (SO2[T]),
total CO (CO[T]), total NH3 (NH3[T]), and total fine or-
ganic carbon PM (ORGF[T]). Anthropogenic area sources

Table 1. Observed species assimilated for the two 1995 episodes, and the coefficient of variation used
for each species in the ridge regression module.

Species                              No. of Observationsa Coefficient of Variation
July 9–19, 1995 May 22–29, 1995 (%)

O
3

70,254 56,323 30
CO 36,111 27,357 50
NO 16,508 9936 50
NO

2
25,451 18,642 45

NO
x

11,434 8955 45
SO

2
59,030 42,296 40

Formaldehyde 240 – 50
Acetaldehyde 240 – 50
Acetone 240 – 50
Ethene 465 24 50
Isoprene 436 18 50
NMOC 192 24 50
SO

4
2– PM

2.5
19 19 30

NO
3
– PM

2.5
19 19 50

NH
4
+ PM

2.5
19 19 30

Crustal PM
2.5

19 19 60
Elemental carbon PM

2.5
19 17 40

Organic carbon PM
2.5

19 17 40
Total PM

2.5
19 19 30

Total PM
10

19 19 30

aNumber of observations include only measurements reported by stations lying within the 12-, 24-, and
48-km grids.



Mendoza-Dominguez and Russell

Volume 51  November 2001 Journal of the Air & Waste Management Association  1543

included stationary, low-elevated point, nonroad, and
mobile categories. Most of the SO2 emissions in this do-
main come from elevated point sources (utility plants),
while the largest CO contributors are mobile sources.

The adjustments considered here were estimated on
an episode basis; that is, all episode observations were used
to derive a single emission-scaling factor for each
domainwide source category that applied to the whole
episode. Daily assimilations (i.e., computing scaling fac-
tors for each source for each day of the episode) were be-
yond the scope of this work because aerosol and VOC
observations were not available for all days of each epi-
sode. However, Mendoza-Dominguez and Russell11 dem-
onstrated that the FDDA technique is capable of
computing emission corrections on a daily basis and for
emissions located in particular subdomains of the model-
ing area. In computing adjustments on an episode and
domainwide basis, we are also implicitly assuming that
the temporal and spatial distribution of the emissions has
less impact on the results than do the emission strengths.

Previous studies10,11 that applied the FDDA technique
assumed that inhomogeneities in the simulated concen-
tration fields were not large, and comparing volume-
averaged modeled concentrations to point measurements
did not introduce large errors in the emission adjustment
calculations. This assumption was based on the fact that
the grid cells of the modeling domain used were relatively
small (4 × 4-km square cells), and the concentrations fields
in that region (Atlanta, GA) are expected to be smooth.
However, these same arguments are not valid for the do-
main and grid structure used here. To take into account
spatial inhomogeneities in the simulated fields, instead
of using the variance of the observations in the We ma-
trix (eq 2) as done in past studies, an estimated error based
on the spatial inhomogeneities of the concentration fields
was used. McNair et al.32 describe a data-withholding tech-
nique that can be used to estimate spatial inhomogene-
ities in pollutant concentrations. However, the effort
required to do a similar analysis in our do-
main becomes prohibitive. Based on the
typical measurement errors found in the
literature for the species assimilated in this
work, the estimated relative lifetime of
those species, and the trends suggested by
the study of McNair et al.,32 we derived a
set of measurement standard deviations to
be used in the We matrix. Table 1 indicates
these standard deviations (as coefficients of
variation). Results are not expected to be
very sensitive to the magnitude of the stan-
dard deviations used.11

URM employs a multiscale grid that runs
from 12- to 192-km-horizontal resolution,

and it was considered that measurements taken in coarse
cells would not be representative of the volume-averaged
concentrations computed by the model. Thus, only ob-
servations taken by stations lying inside the 12-, 24-, and
48-km grids were considered. The total number of obser-
vations of these stations for each episode is summarized
in Table 1. For the July 1995 episode, 131 AIRS stations
with valid data were located in the 12-km grid, 220 were
located in the 24-km grid, and 227 were located in the
48-km grid. For the May 1995 episode, 127 AIRS stations
with valid data were located in the 12-km grid, 223 were
located in the 24-km grid, and 226 were located in the
48-km grid. Similarly, IMPROVE measurements were used
in the assimilation process.

Table 2 summarizes the IMPROVE stations used. Mea-
surements from six stations from the PAMS network that
measured speciated VOCs and total nonmethane organic
compounds (NMOCs) were used for the July 1995 epi-
sode (see Table 2). Only one of these stations, Corbin,
had valid VOC data for the May 1995 episode, and that
was only for May 24. The six PAMS sites are located in the
12- and 24-km-resolution grids. Observations from five
stations in the 48-km grid were available (one in Balti-
more, one in the New York-New Jersey area, and three in
the Philadelphia-Wilmington-Trenton area), but they were
not used because these measurements could bias the FDDA
results with northern urbanlike conditions in the case
where the main interest are the rural regions of the south-
ern Appalachian Mountains. The limited number of VOC
observations and their poor spatial resolution had an
important impact in defining the values assigned to the
δij scaling factors used to compute the G matrix (eq 1), as
discussed in the next section.

Finally, a modification to the weighting matrix We

was included to take into account the location where the
measurements were taken in relation to the different grid
resolutions. As mentioned, observations taken in the sec-
tions of the grid with resolutions of 12-, 24-, and 48-km

Table 2. URM grid resolution for IMPROVE (PM observations) and PAMS (VOC observations) stations.

IMPROVE Stations Grid Cell Size (km) PAMS Stations Grid Cell Size (km)

Brigantine (NJ) 48 South DeKalb (GA) 12
Dolly Sods/Otter Creek (WV) 12 Conyers (GA) 12
Great Smoky Mountains (TN) 12 Fort Meade (MD) 24
Jefferson/James River Face (VA) 12 Aldino (MD) 24
Mammoth Cave (KY) 24 McMillan Reservoir (DC) 24
Cape Romain (SC) 48 Corbin (VA) 24
Shenandoah (VA) 12
Shining Rock (NC) 12
Sipsy (AL) 12
Washington, DC 24
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were used in the assimilation process. However, the area
covered by the 12-km grid represents an area of greater
interest than the regions covered with coarser resolution
grids, and those simulated data should be more compa-
rable to the monitored data. Thus, a term to weight the
relative importance of each measurement based on the
grid resolution where the station is located was included
in the calculation of the elements of the We matrix. Equa-
tion 2 was updated in the following manner:

(3)

where df is the resolution of the finest grid (i.e., 12 km)
and dik is the resolution of the grid where the kth mea-
surement of species i was taken.

RESULTS
In past applications10,11 of the FDDA approach, all sources
were treated simultaneously with all observations to ob-
tain the estimated emission adjustment factors for those
sources. In the applications reported in this paper, we
observed instabilities in the estimated adjustment fac-
tors if the same approach is taken. Collinearity problems
were observed, which resulted in problems with the in-
verse of GTWeG + Wm, especially in the first iteration steps.
For example, inspection of the correlation matrix ob-
tained from ridge regression in the first iteration step of
the assimilation for the May 1995 episode data revealed
off-diagonal terms with absolute values greater than 0.97.
In particular, NOx[A] and NOx[P] were highly correlated
with each other, as was VOC[A] with VOC[B] and ORG[T]
with VOC[B]. This multicollinearity resulted in variance
inflation factors (VIFs) for some regression estimates of
2 orders of magnitude higher than the ideal case value
of 1. These high VIFs are an indication of low precision
in the estimates.33

To overcome these difficulties, we treated separately
each source in the first iteration steps; that is, the ambi-
ent measurements were used to estimate the emission ad-
justments of a single source, one source at a time. This
alleviated the multicollinearity and stability problem, but
induced at least two more iteration steps than the three
or four previously11 needed. The reason for the increment
in the number of iterations is that a single source is ad-
justed to minimize the differences of all assimilated spe-
cies without considering other sources. As iterations
proceed, the adjustments of other sources redefine the
direction toward which the single adjustments move.

In deriving the scaling factors reported in this work,
the limited number of VOC measurements necessitated a
different approach compared with our previous study11

for defining the δij values used to weight the sensitivity
coefficients (to then construct the G matrix of eq 1). As

described earlier, the δij scaling factors were used before
to emphasize the observations of primary species and al-
low the secondary species to refine the results. That ap-
proach is not viable in this study. Instead, secondary
species such as O3 were given more weight in trying to
obtain stable adjustment factors.

A complete matrix of the values used for each δij com-
ponent is given in Table 3. In general, the VOCs were given
less weight because of the lack of measurements, particu-
larly being spatially sparse, to realistically reflect the vari-
ety of conditions in the airshed. In addition, VOC
measurements were not used when the source was either
VOC[A] or VOC[B] for the May episode (though VOC mea-
surements were used with these sources in sensitivity tests
discussed in the next section) because of the unrepresent-
ativeness of these measurements. Measurements of NO and
NO2 were used only to constrain the NOx sources (i.e.,
NOx[A] and NOx[P]); for all other sources, no significant
differences were obtained using these measurements in
addition to NOx measurements. Even though elemental
carbon and crustal PM2.5 measurements were used, their
influence on the results was negligible, as expected.

Some of the species were not assimilated because they
resulted in severe instabilities of the adjusted estimates.
In particular, for CO[T], the aerosol species (except the
crustals and elemental carbon) affected this source unfa-
vorably. In this case, the knowledge of the physics and
chemistry of the model aids in concluding that this is
probably a numerical artifact and these measurements do
not provide relevant information on how CO sources
should be modified. For the VOC sources, as for the NOx

sources, most of the weight was given to O3 and NOx

measurements. As with CO[T], both VOC sources were
also susceptible to instabilities when PM data were used,
even when organic carbon PM2.5 was assimilated. Here, it
was assumed that allowing secondary gas-phase species
to correct VOC emissions would also yield better estimates
of secondary formation of organic aerosol. The implica-
tions of using the weighting scheme presented in Table 3
are further discussed in the next section.

Table 4 summarizes the results obtained from the
AQM-FDDA application to the two episodes of interest.
The values represent the scaling factors by which the
domainwide emissions need to be multiplied to mini-
mize the difference between observations and model pre-
dictions. As mentioned earlier, a single scaling factor was
estimated for the emissions of the whole episode. Re-
sults from both episodes tend to be consistent with each
other. Results indicate that the emissions of SO2, CO,
and NOx from point sources are apparently well estimated
using the conventional emission modeling techniques.
The results obtained for SO2 and NOx[P] are an indica-
tion of the improved accuracy of emissions estimates
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from using day-specific emissions available from continu-
ous emissions monitors. (As noted previously, most SO2

emissions in the domain come from utility emissions.)
Biogenic VOC emissions also appear to be well esti-

mated. BEIS2 estimates for the southeastern United States
have been found to closely represent real-world biogenic
emissions in past studies,11,34 and our results are in line with
the results of those studies. Ground-level anthropogenic
VOC and NOx emissions, as well as NH3 emissions, were
the most frequently adjusted by FDDA to reconcile obser-
vations and model-derived concentrations. AQM studies
in California’s South Coast Air Basin12,35 have reported that
current mobile emission estimates might be understated
by 2.5–3 times their real-world values, while others6,36 have
indicated the potential underestimation of NOx mobile
emissions (particularly from heavy-duty diesel vehicles).
The results obtained here also suggest potential flaws in
the VOC and NOx inventory, though no differentiation
was made between mobile and stationary sources.

DISCUSSION
Statistical model performance analysis is a basic tool used
by air quality modelers to assess how closely the AQM is
representing the atmospheric process in an airshed, and
how suitable it is for considering its use to answer relevant
scientific and environmental management questions.37

Tables 5 and 6 summarize model performance results ob-
tained for gas-phase and aerosol species, respectively, for
the base-case simulations of the two episodes investigated.
Even though this type of analysis can provide informa-
tion regarding what sources might be misinventoried or
biased, it cannot indicate how much, for example, the
emissions should be adjusted to improve the model per-
formance. Moreover, the biases themselves can be mis-
leading in that attempting to reduce the bias of a certain
species might negatively impact other species. The pur-
pose of using FDDA is to have a formal methodology to

Table 3. Values defined for δ
ij
 in both model episodes.

                          Sourcesa

Species CO[T] SO
2
[T] NH

3
[T] NO

x
[A] NO

x
[P] VOC[A] VOC[B] ORGF[T]

CO 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
O

3
0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5

NO 0.5 0.5
NO

2
0.5 0.5

NO
x

0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5
SO

2
0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5

Etheneb 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Isopreneb 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Formaldehydec 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Acetaldehydec 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Acetonec 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
NMOCb 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
SO

4

2– PM
2.5

1.0 0.5 0.1 0.1 0.5
NO

3

– PM
2.5

0.5 0.5 0.5
NH

4

+ PM
2.5

0.5 1.0 0.1 0.1 0.5
Organic carbon PM

2.5
0.5 0.5 0.1 0.1 1.0

Elemental carbon PM
2.5

0.5 0.5 0.1 0.1 0.5
Crustal PM

2.5
0.5 0.5 0.1 0.1 0.5

Total PM
2.5

0.5 0.5 0.1 0.1 0.5
Total PM

10
0.5 0.5 0.1 0.1 0.5

aSee text (p 1542) for description of abbreviations; bFactors for these species were assigned a value of 0 for the May 1995 episode (see text for details); cSpecies not measured during
the May 1995 episode.

Table 4. Estimated emission adjustments for July and May 1995 base-case inventories
(as scaling factors).

Sourcea July 1995 Inventory May 1995 Inventory

CO[T] 1.08 1.26
SO

2
[T] 1.13 1.08

NO
x
[A] 1.77 1.50

NO
x
[P] 1.31 1.24

VOC[A] 2.21 2.84
VOC[B] 1.24 1.17
NH

3
[T] 0.52 0.59

ORGF[T] 0.49 0.62

aSee text (p 1542) for description of abbreviations.
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determine with some degree of certainty the most likely
combination of adjustments that will improve the over-
all model performance and result in a model that repre-
sents more accurately the real chemical state of the airshed
being analyzed.

After a stable response was obtained by the FDDA ap-
plication, a second model performance evaluation was
conducted and compared with the base-case performance.
Tables 7 and 8 summarize the new statistics computed for
each episode. In comparing Tables 5 and 6 with Tables 7
and 8, caution needs to be taken, because not all statistics
reported represent a good index to measure the improve-
ment after using FDDA. The comparison is presented be-
cause these statistics retain information pertaining to
absolute differences and biases in the performance of the
simulations with respect to certain species.

Another option would be to analyze the behavior of
the objective function being minimized (the objective

function is defined as: Γ = eTWee +
mWmm, where e = d – Gm). However,
this last analysis lumps together the er-
rors of all species, not allowing a spe-
cies-by-species analysis of remaining
errors and biases. In addition, if the
minimization was conducted only on
the first term of Γ, the reduction in the
value of the objective function could be
implied from the values obtained for
the root-mean-square error (RMSE) of
each species, because minimizing the
square error would also minimize the
root square error. However, the second
term induces some biasing in the ridge
regression estimates (i.e., the compo-
nents of the m vector) to obtain stable
estimators with low variances under
conditions of few or noisy data. This bi-
asing can translate into a detriment of
overall fit and lower coefficients of de-
termination (R2)38 for some species. Be-
cause of this degradation in the overall
fit, it is not unexpected to obtain a
slightly higher RMSE for some species
after the assimilation procedure. For this
reason, the systematic portion of the
RMSE, the RMSEs, is reported in addi-
tion to the RMSE because it contains in-
formation regarding systematic biases
in the model results, and even if the
RMSE increases slightly after the FDDA
procedure, a reduction in the RMSEs
would indicate better performance.11

        Low values of the RMSEs would in-
dicate that most of the variation in the observations has
been addressed by the model, and the remaining error
{the unsystematic RMSE [RMSEu = (RMSE2 – RMSEs2)1/2]}
would be an indication of random error. It can be noted
also that in the statistics reported, the normalized bias
and error (which are typically reported) were omitted, and
instead the fractional bias and error are listed. Seigneur et
al.37 have indicated that the normalized bias and error
tend to overemphasize overpredictions, leading to pos-
sible erroneous conclusions from the use of the cited nor-
malized quantities. To overcome this limitation, the same
authors suggest using the fractional bias and error, which
are bounded quantities: the bias is in the range of ±2, and
the error is always less than 2.

Tables 7 and 8 indicate an improvement in the per-
formance of species such as O3 and NOx for both episodes.
Modest improvements were obtained for other species,
such as CO. This is an indication that adjusting episodic

Table 5. Gas-phase species model performance statistics for July and May 1995 base-case runs.a

                             Statisticsb

Species Mean Bias Mean Error Fractional Fractional RMSE RMSEs
(ppb)  (ppb) Bias Error  (ppb) (ppb)

July 11–19, 1995
O

3
–4.00 13.9 –0.06 0.23 20.9 15.8

NO –6.32 7.10 –1.17 1.29 17.4 17.1
NO

2
–6.54 11.4 –0.47 0.71 15.5 11.4

NO
x

–12.9 18.8 –0.55 0.77 29.8 26.2
CO –369 473 –0.38 0.64 729 707
SO

2
–1.45 5.95 –0.07 0.87 12.6 10.7

Ethene –0.09 0.99 –0.14 0.57 1.82 1.31
Isoprene –0.06 2.22 –0.27 1.04 3.85 2.96
Acetone –4.17 4.17 –1.40 1.40 4.58 4.58
Formaldehyde –3.45 3.89 –0.41 0.47 4.89 4.82
Acetaldehyde 0.03 0.90 0.08 0.36 1.17 1.11
NMOCc –33.2 46.8 –0.22 0.36 58.8 56.3
May 24–29, 1995
O

3
–5.90 10.1 –0.13 0.21 15.7 11.2

NO –4.63 6.18 –0.98 1.18 14.6 13.7
NO

2
–4.25 9.29 –0.36 0.64 12.9 8.6

NO
x

–8.88 15.3 –0.43 0.69 25.4 21.1
CO –233 359 –0.20 0.56 584 564
SO

2
1.28 6.04 0.28 0.86 11.9 8.95

Ethene –0.25 0.26 –0.62 0.65 0.28 0.27
Isoprene 0.45 0.79 0.26 0.58 1.00 0.57
NMOCc –19.1 26.8 –0.22 0.45 42.6 42.0

aCutoffs: NO
2
—5 ppb, NO

x
—5 ppb, NO—0.5 ppb, O

3
—40 ppb; bStatistics are computed based on the residual r

i 
= P

i
 – O

i
,

where O
i
 and P

i
 are the ith observed and predicted concentrations, respectively. The mean bias is 1/N⋅Σr

i
, where N is the

number of valid observation/prediction pairs and the summation runs from i = 1 to N. Similarly, the mean error is
1/N⋅Σ|r

i
|, the fractional bias is 2/N⋅Σ[r

i
/(O

i
 + P

i
)], the fractional error is 2/N⋅Σ[|r

i
|/(O

i 
+ P

i
)], and the RMSE is [1/N⋅Σ(r

i
)2]

1/2.
The systematic RMSE (RMSEs) is obtained from [1/N⋅Σ(r

i
)2]

1/2, where r
i 
= P

i
 – O

i
, and P

i 
= a + bO

i
 (a and b are linear

regression coefficients); cStatistics reported in units of parts per billion of carbon.
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domainwide emissions does not resolve
all the possible sources of differences
between model predictions and actual
concentrations. In fact, this is not unex-
pected, because apparently we would be
asking too much of FDDA to drastically
improve the performance of all species
at such time and spatial scales by scaling
emissions only at the domainwide level.
In addition, the statistics are episode av-
erages for all the observations in the do-
main, and for some species the number
of observations that go into the calcula-
tion of the statistics is significant. Thus,
significant local improvements do not
show in the analysis. Another alternative
to improve the overall performance is to
increase the temporal and spatial resolu-
tion used by FDDA. This implies, for ex-
ample, adjusting for daily rather than
episodic emissions11 and partitioning the
modeling domain in subdomains and
computing adjustment for those areas
separately.7,11 However, the type of analy-
sis conducted here is valuable in that,
even though the temporal and spatial
scales used for the computations were
large, there exists evidence to indicate
that the trends observed are significant.
For example, CO, area source NOx, and
anthropogenic VOC emissions appear to
have been understated in the base-case

emissions inventories of both episodes.
Taking this one step further, some might
argue that increasing the resolution for
the FDDA analysis would tend to over-
correct the emissions below the legiti-
mate uncertainty expected from the
model calculations.
       Some emission sources were of par-
ticular interest in that the base-case
model performance statistics suggested
conflicting adjustment scenarios. For
example, for the May episode, the per-
formance for SO2 in the base-case simu-
lation suggests an overprediction, while
the SO4

2– PM2.5 performance indicates an
underprediction. The selection of the
weighting scheme presented in Table 3
for the δij weighting factors is clearly only
one option of several that can be sug-
gested. Thus, the impact of the values
selected for these factors on the final

Table 6. Aerosol species model performance statistics for July and May 1995 base-case runs.

                        Statistics
Species Mean Bias Mean Error Fractional Fractional RMSE RMSEs

(µg/m3) (µg/m3) Bias Error (µg/m3) (µg/m3)

July 11–19, 1995
SO

4

2– PM
2.5

–0.74 2.02 –0.12 0.27 2.63 1.89
NH

4

+

 
PM

2.5
0.63 0.83 0.25 0.35 1.06 0.76

NO
3

– PM
2.5

0.27 0.41 0.06 0.89 0.70 0.36
Organic PM

2.5
0.04 2.02 0.03 0.37 2.43 1.74

PM
2.5

–5.37 6.37 –0.22 0.27 8.03 6.73
PM

10
–2.46 7.71 –0.11 0.23 10.79 6.23

May 24–29, 1995
SO

4

2– PM
2.5

–0.98 2.20 –0.20 0.36 2.74 2.59
NH

4

+ PM
2.5

0.83 0.91 0.37 0.44 1.18 1.09
NO

3

– PM
2.5

0.69 0.79 0.54 1.03 0.92 0.74
Organic carbon PM

2.5
–0.25 1.03 –0.01 0.28 1.25 1.08

PM
2.5

–2.82 5.09 –0.18 0.31 6.76 6.30
PM

10
–0.81 8.81 –0.04 0.35 10.3 8.39

Table 7. Gas-phase species model performance statistics for July and May 1995 simulations after applying the
adjusted emissions inventories.a

                       Statistics
Species Mean Bias Mean Error Fractional Fractional RMSE RMSEs

(ppb) (ppb) Bias Error (ppb) (ppb)

July 11–19, 1995
O

3
–0.02 15.2 –0.03 0.25 21.7 13.2

NO –3.84 7.93 –0.75 1.11 18.7 15.8
NO

2
1.11 12.3 –0.06 0.60 17.8 8.40

NO
x

–1.95 20.1 –0.13 0.65 33.1 21.0

CO –353 468 –0.35 0.63 723 697
SO

2
–0.53 6.09 –0.02 0.92 12.7 10.5

Ethene 4.83 5.10 1.14 1.18 6.78 5.02

Isoprene 0.44 2.55 –0.14 1.07 4.33 3.10
Acetone –3.76 3.76 –1.16 1.16 4.21 4.20
Formaldehyde –1.77 3.04 –0.16 0.34 3.87 3.69

Acetaldehyde 1.03 1.43 0.38 0.49 1.83 1.65
NMOCb 19.9 38.4 0.17 0.27 51.7 41.1
May 24–29, 1995
O

3
–4.08 10.2 –0.10 0.22 15.9 9.90

NO –2.77 6.81 –0.68 1.06 15.9 12.7
NO

2
0.41 9.95 –0.06 0.57 14.3 7.25

NO
x

–1.95 16.51 –0.11 0.62 27.9 18.2
CO –198 353 –0.14 0.54 570 541
SO

2
1.95 6.45 0.36 0.88 12.3 9.09

Ethene 0.22 0.27 0.31 0.41 0.33 0.25
Isoprene 0.78 1.05 0.36 0.65 1.25 0.81

NMOCb 13.6 36.7 0.30 0.55 42.2 40.5

aSame cutoffs as in Table 5; bStatistics reported in units of parts per billion of carbon.
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emission adjustments was further investigated.
To perform the analysis, once a stable response of the

emission adjustment factors was obtained using the
scheme presented in Table 3, some of the δij were per-
turbed. The values set to 1 in Table 3 were kept as such,
while the values set to 0.5 were decreased to 0.1. Under
the alternative weighting scheme, the adjustment factors
for May emissions of CO and fine organic PM were prac-
tically the same (1.27 and 0.60, respectively). The adjust-
ment factors for SO2, NOx, and NH3 emissions of the same
episode changed somewhat: SO2[T] was now decreased
by 7% from its base value, NOx[A] increased only by 44%,
NOx[P] increased by 35%, and NH3[T] decreased by 50%.
In this case, both NOx emissions are still increased, but
the relative amounts are different, with area sources still
being corrected more than point sources.

The change in the estimated scaling of SO2 emis-
sions demonstrates that the procedure is sensitive to the
relative importance that is given to each observed spe-
cies, and a careful analysis of the observational data set
being used is very important. For this species, it is ap-
parent that, for example, in reducing the weight of total
PM2.5, the SO2 observations could be outweighing the
SO4

2– PM2.5 observations. In the case of the analysis pre-
sented for SO2 during the May episode, it can be con-
cluded that in general the average emissions are
estimated closely to what it is expected to be their real
value, although they might be slightly under- or
overpredicted. To further illustrate the sensitivity on the
weighting scheme used, the VOC[A] adjustment factor
for the May episode was computed including observations

of NMOCs and ethene. The sensitivities
of NMOC and ethene concentrations to
VOC[A] were scaled by a factor of 0.1
(i.e., their corresponding δij was set to
0.1). This change produced a new ad-
justment for VOC[A] of only 1.78 times
the base-case inventory instead of the
2.84 times reported earlier (see Table 4).
      The new VOC[A] adjustment is not
as large as before, even with such a
small value assigned to the δij of NMOC
and ethene, because on an absolute
scale, the sensitivities of NMOC and
ethene to VOC[A] are larger than the
sensitivities of O3 and NOx to VOC[A]
and thus drive the correction of this
source. This is clearly noted by indi-
cating that the mean bias of ethene and
NMOC with VOC[A] scaled by 1.78 was
0.0 ppb and –3.1 ppb C, respectively,
that the RMSE was reduced from 0.3
to 0.2 ppb for ethene and from 42.6 to

39.4 ppb C for NMOC, and that the performance of O3

was degraded. In contrast, mean bias and RMSE for the
same species increased for the simulation with a scal-
ing factor of 2.78 for VOC[A], while the performance
of O3 improved. For this last case, it can be argued that
improving the performance of O3 is a better approach
than using the VOC observations, which are sparse for
this particular application.

Finally, relationships between the O3/NOx/VOC and
NH4

+/NO3
–/SO4

2– systems can be observed from the results
obtained. For example, Tables 4, 5, and 7 suggest that the
July episode is lower in NOx than the May episode, but
there is a higher negative bias of O3 in May. Thus, to com-
pensate for the O3 bias in May, VOC emissions during
this episode were increased more than in July. Of note,
the emissions of fine organic PM had to be decreased in
both episodes due to the increase in the organic load in
the gas phase, which generated more secondary organic
aerosol. In both episodes, the NH3 emissions were reduced
from their base-case level due to high concentrations of
NH4

+ aerosol. It was also observed that the decrease in
gas-phase NH3 contributed to lower concentrations of NO3

–

aerosol. In this case, NH3 is being tied up with SO4
2– to

form (NH4)2SO4, and not as much NH3 remains to neu-
tralize gas-phase HNO3 to form NH4NO3. Observations of
NH3 and HNO3 would be valuable to have a better picture
of these last relationships.

In summary, the results presented here indicate that
for the base-case inventories used here, emissions of
SO2 appear to be estimated reasonably well, while NOx,
VOC, NH3, and organic PM2.5 emissions require revision.

Table 8. Aerosol species model performance statistics for July and May 1995 simulations after applying the adjusted
emissions inventories.

                     Statistics
Species Mean Bias Mean Error Fractional Fractional RMSE RMSEs

(µg/m3) (µg/m3) Bias Error (µg/m3) (µg/m3)

July 11–19, 1995
SO

4
2– PM

2.5
0.07 2.07 –0.05 0.26 2.73 1.95

NH
4

+ PM
2.5

0.13 0.61 0.08 0.28 0.80 0.44
NO

3
– PM

2.5
0.06 0.34 –0.60 1.14 0.55 0.25

Organic PM
2.5

0.66 2.09 0.14 0.36 2.69 1.99
PM

2.5
–4.65 5.87 –0.18 0.25 7.43 6.08

PM
10

–1.75 7.09 –0.08 0.21 10.11 5.28
May 24–29, 1995
SO

4
2– PM

2.5
–1.10 2.08 –0.21 0.35 2.68 2.55

NH
4

+ PM
2.5

0.50 0.60 0.26 0.34 0.72 0.63
NO

3
– PM

2.5
0.46 0.64 0.16 1.02 0.80 0.58

Organic carbon PM
2.5

0.06 1.07 0.07 0.29 1.23 1.01
PM

2.5
–3.14 4.69 –0.19 0.29 6.40 6.00

PM
10

–1.17 8.44 –0.05 0.34 9.74 7.87
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These results arise from the premise that emissions were
the major source of uncertainty in the modeling exer-
cise. Additional confidence in the SO2 emissions is
gained by the fact that day-specific emissions were used
and to some extent the SO2/SO4

2– system is well known.
On the other hand, caution should be taken with the
results obtained for the organic portion of the PM2.5,
because this system is less well known and uncertain-
ties in other model components may influence the re-
sults. In addition, the values presented in Table 4 should
not be viewed as the “true” scaling needed to apply to
the emissions. These values are estimates based on the
assumptions described throughout the paper. However,
and as mentioned earlier, there is confidence that the
results can be taken as a guideline to improve the in-
ventories used here, and overall that the technique is a
valuable tool for similar analysis on other domains with
their particular inventories.

CONCLUSIONS
The wealth of information contained in chemical mea-
surements of the atmosphere is increasing as more and
better analysis tools are becoming available. Moreover,
the amount of observational data has increased im-
mensely due to the deployment of more stations and
instruments that enhance the capabilities of current
routine networks. This trend will continue, particularly
as satellite-derived data of atmospheric chemical com-
position become available, which would enable re-
searchers to deduce 2- and 3-dimensional observed
concentration fields. In this work, we have used FDDA
as a means to incorporate ambient measurements to
identify possible errors in the emissions inventory used
in two air quality modeling episodes that had the east-
ern United States as the modeling domain. The FDDA
approach consists of an iterative optimization proce-
dure in which an AQM is coupled to an inverse model,
and adjusting the emissions minimizes the difference
between ambient measurements and model-derived
concentrations. The FDDA technique used has the ca-
pability of assimilating both gas-phase and aerosol ob-
served species.

Ambient measurements of gas-phase inorganic and
organic species and speciated PM2.5 were assimilated to
derive emission adjustments of different sources of NOx,
VOCs, CO, SO2, NH3, and fine organic aerosol emissions.
Results indicate that for the base-case inventories used
here, emissions of SO2 appear to be estimated reason-
ably well (requiring minor revisions), while NOx, VOC,
NH3, and organic PM2.5 emissions require revision (or
other model components that can be responsible for
the errors observed). The CO emissions appear to be some-
what underestimated. Even though a single correction

factor per source for the whole episode was estimated,
results are consistent between episodes and within
each episode. No major difference was observed in the
statistical model performance evaluation of some spe-
cies before and after the assimilation was conducted,
but this may be due in part to using a single factor for
correcting emissions domainwide. Finally, it was also
demonstrated that while the choice of weighting pa-
rameters in the FDDA application affects the adjust-
ment factors obtained, the ultimate adjustments
remained similar. A priori knowledge of the quality of
the observations and the problem at hand should be
used to define the strategy of assimilation that gives
the most significant results.

ACKNOWLEDGMENTS
This study was supported in part by the U.S. National Sci-
ence Foundation (Contract No. BES-9613729) and Geor-
gia Power. A. Mendoza-Dominguez also acknowledges the
Consejo Nacional de Ciencia y Tecnología (Mexico) for
partial support during his research stay at Georgia Insti-
tute of Technology. The authors acknowledge the South-
ern Appalachian Mountain Initiative (SAMI) atmospheric
modeling group for providing the air quality model in-
put files used in this work.

REFERENCES
1. Receptor Modeling for Air Quality Management; Hopke, P.K., Ed.; Elsevier

Science: Amsterdam, 1991.
2. Parkhurst, W.J.; Tanner, R.L.; Weatherford, F.P.; Valente, R.J.; Meagher,

J.F. J. Air & Waste Manage. Assoc. 1999, 49, 1060-1067.
3. Seigneur, C.; Pai, P.; Hopke, P.K.; Grosjean, D. Environ. Sci. Technol.

1999, 33, 80A-86A.
4. Russell, A.; Dennis, R. Atmos. Environ. 2000, 34, 2283-2324.
5. Placet, M.; Mann, C.O.; Gilbert, R.O.; Niefer, M.J. Atmos. Environ. 2000,

34, 2183-2204.
6. Sawyer, R.F.; Harley, R.A.; Cadle, S.H.; Norbeck, J.M.; Slott, R.; Bravo,

H.A. Atmos. Environ. 2000, 34, 2161-2181.
7. Mulholland, M.; Seinfeld, J.H. Atmos. Environ. 1995, 29, 497-516.
8. Haas-Laursen, D.E.; Hartley, D.E. J. Geophys. Res. 1996, 101 (D17),

22823-22831.
9. Chang, M.E.; Hartley, D.E.; Cardelino, C.; Haas-Laursen, D.; Chang,

W-L. J. Geophys. Res. 1997, 102 (D13), 16023-16036.
10. Mendoza-Dominguez, A.; Russell, A.G. Environ. Sci. Technol. 2000,

34, 4974-4981.
11. Mendoza-Dominguez, A.; Russell, A.G. Atmos. Environ. 2001, 35,

2879-2894.
12. Harley, R.A.; Russell, A.G.; McRae, G.J.; Cass, G.R.; Seinfeld, J.H.

Environ. Sci. Technol. 1993, 27, 378-388.
13. Frank, I.E.; Friedman, J.H. Technometrics 1993, 35, 109-148.
14. Yang, Y.-J.; Wilkinson, J.G.; Russell, A.G. Environ. Sci. Technol. 1997,

31, 2859-2868.
15. Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.;

Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.;
Copeland, J.H. Meteor. Atmos. Phys. 1992, 49, 69-91.

16. Wilkinson, J.G.; Loomis, C.F.; McNally, D.E.; Emigh, R.A.; Tesche, T.W.
Technical Formulation Document: SARMAP/LMOS Emissions Modeling
System (EMS-95); AG-90/TS26 & AG-90/TS27; Alpine Geophysics: Pitts-
burgh, PA, 1994.

17. Odman, M.T.; Russell, A.G. J. Geophys. Res. 1991, 96, 7363-7370.
18. Kumar, N.; Odman, M.T.; Russell, A.G. J. Geophys. Res. 1994, 99,

5385-5397.
19. Odman, M.T.; Russell, A.G. Atmos. Environ. 1991, 25A, 2385-2394.
20. Odman, M.T.; Russell, A.G. Atmos. Environ. 1993, 27A, 793-799.
21. Odman, M.T.; Russell, A.G. In Air Pollution Modelling and Its Applica-

tions XII; Gryning, S.-E., Batchvarova, E., Eds.; Plenum: New York,
2000; pp 651-660.

22. Carter, W.P.L. Atmos. Environ. 1990, 24, 481-518.



Mendoza-Dominguez and Russell

1550   Journal of the Air & Waste Management Association Volume 51  November 2001

23. Carter, W.P.L. Atmos. Environ. 1996, 30, 4275-4290.
24. Berkowitz, C.M.; Easter, R.C.; Scott, B.C. Atmos. Environ. 1989, 23,

1555-1571.
25. Boylan, J.; Wilkinson, J.; Yang, Y.-J.; Odman, T.; Russell, A. Particu-

late Matter and Acid Deposition Modeling for the Southern Appala-
chian Mountains Initiative. In Proceedings of the 93rd Annual Meeting
& Exhibition of A&WMA, Salt Lake City, UT, June 2000; Air & Waste
Management Association: Pittsburgh, PA, 2000; Paper No. 707.

26. Nenes, A.; Pandis, S.N.; Pilinis, C. Aquat. Geochem. 1998, 4, 123-152.
27. Pandis, S.N.; Harley, R.A.; Cass, G.R.; Seinfeld, J.H. Atmos. Environ.

1992, 26A, 2269-2282.
28. Wesely, M.L. Atmos. Environ. 1989, 23, 1293-1304.
29. Odman, T.; Boylan, J.; Wilkinson, J.; Yang, Y.-J.; Russell, A.; Doty, K.;

McNider, R. Ozone Modeling for the Southern Appalachians Moun-
tains Initiative. In Proceedings of the 93rd Annual Meeting & Exhibition
of A&WMA, Salt Lake City, UT, June 2000; Air & Waste Management
Association: Pittsburgh, PA, 2000; Paper No. 698.

30. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W. Bull. Am. Meteor.
Soc. 1996, 77, 437-471.

31. Geron, C.D.; Pierce, T.E.; Guenther, A.B. Atmos. Environ. 1995, 29,
1569-1578.

32. McNair, L.A.; Harley, R.A.; Russell, A.G. Atmos. Environ. 1996, 30,
4291-4301.

33. Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.;
Duxbury: Belmont, CA, 1990.

34. Chang, M.E.; Hartley, D.E.; Cardelino, C.; Chang, W.-L. Geophys. Res.
Lett. 1996, 23, 3007-3010.

35. Harley, R.A.; Sawyer, R.F.; Milford, J.B. Environ. Sci. Technol. 1997, 31,
2829-2839.

36. National Research Council. Modeling Mobile-Source Emissions; National
Academy Press: Washington, DC, 2000.

37. Seigneur, C.; Pun, B.; Pai, P.; Louis, J.-F.; Solomon, P.; Emery, C.; Mor-
ris, R.; Zahniser, M.; Worsnop, D.; Koutrakis, P.; White, W.; Tombach,
I. J. Air & Waste Manage. Assoc. 2000, 50, 588-599.

38. Gruber, M.H.J. Improving Efficiency by Shrinkage: The James-Stein and
Ridge Regression Estimators; Statistics: Textbooks and Monographs, Vol.
156; Marcel Dekker: New York, 1998.

About the Authors
Alberto Mendoza-Dominguez (corresponding author) is an
assistant professor in the Chemical Engineering Department,
Instituto Tecnológico y de Estudios Superiores de Monterrey
(ITESM), Monterrey Campus, Ave. Eugenio Garza Sada
2501 Sur, Monterrey, N.L., Mexico, 64849; e-mail:
almendoz@campus.mty.itesm.mx. Armistead G. Russell is
the Georgia Power Professor of Environmental Engineer-
ing, School of Civil and Environmental Engineering, Geor-
gia Institute of Technology, 200 Bobby Dodd Way, Atlanta,
GA 30332-0512; e-mail: trussell@themis.ce.gatech.edu.


