
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uawm20

Download by: [University of North Texas] Date: 06 January 2017, At: 21:58

Journal of the Air & Waste Management Association

ISSN: 1096-2247 (Print) 2162-2906 (Online) Journal homepage: http://www.tandfonline.com/loi/uawm20

Assessing the Impact of Differential Measurement
Error on Estimates of Fine Particle Mortality

Timothy J. Carrothers & John S. Evans

To cite this article: Timothy J. Carrothers & John S. Evans (2000) Assessing the Impact of
Differential Measurement Error on Estimates of Fine Particle Mortality, Journal of the Air &
Waste Management Association, 50:1, 65-74, DOI: 10.1080/10473289.2000.10463988

To link to this article:  http://dx.doi.org/10.1080/10473289.2000.10463988

Published online: 27 Dec 2011.

Submit your article to this journal 

Article views: 84

View related articles 

Citing articles: 7 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=uawm20
http://www.tandfonline.com/loi/uawm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10473289.2000.10463988
http://dx.doi.org/10.1080/10473289.2000.10463988
http://www.tandfonline.com/action/authorSubmission?journalCode=uawm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uawm20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10473289.2000.10463988
http://www.tandfonline.com/doi/mlt/10.1080/10473289.2000.10463988
http://www.tandfonline.com/doi/citedby/10.1080/10473289.2000.10463988#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/10473289.2000.10463988#tabModule


Carrothers and Evans

Volume 50  January 2000 Journal of the Air & Waste Management Association  65

ISSN 1047-3289 J. Air & Waste Manage. Assoc. 50:65-74

Copyright 2000 Air & Waste Management Association

TECHNICAL PAPER

Assessing the Impact of Differential Measurement Error on
Estimates of Fine Particle Mortality

Timothy J. Carrothers and John S. Evans
Harvard School of Public Health, Boston, Massachusetts

ABSTRACT
In air pollution epidemiology, error in measurements of
correlated pollutants has been advanced as a reason to dis-
trust regressions that find statistically significant weak as-
sociations. Much of the related debate in the literature and
elswhere has been qualitative. To promote quantitative
evaluation of such errors, this paper develops an air pollu-
tion time-series model based on correlations among unit-
normal variables. Assuming there are no other sources of
bias present, the model shows the expected amount of rela-
tive bias in the regression coefficients of a bivariate regres-
sion of coarse and fine particulate matter measurements
on daily mortality. The model only requires information
on instrumental error and spatial variability, along with
the observed regression coefficients and information on the
true fine-course correlation. Analytical results show that if
one pollutant is truly more harmful than the other, then it
must be measured more precisely than the other in order
not to bias the ratio of the fine and course regression coef-
ficients. Utilizing published data, a case study of the Harvard
Six-Cities study illustrates use of the model and empha-
sizes the need for data on spatial variability across the study
area. Current epidemiology time-series regressions can use
this model to address the general concern of correlated pol-
lutants with differing measurement errors.

INTRODUCTION
Few scientists will debate the human health effects of ex-
tremely high air pollution episodes such as the London
fogs of the 1950s.1,2 By contrast, there is great debate re-
garding the effects of current U.S. air pollution levels.3-5

Many scientists continue to question the scientific basis
for the U.S. Environmental Protection Agency’s (EPA) re-
cent revisions of primary ambient air quality standards
for particulate matter and ozone.4,6,7 Some of the main
issues raised include exposure errors, residual confound-
ing, and correlated pollutants.3,4,8,9 The uncertainties as-
sociated with these issues are rarely quantified, much less
resolved, in the usual qualitative arguments set forth in
the current epidemiological literature. This paper attempts
to better quantify the uncertainty involved with one par-
ticular argument, the concern over correlated pollutants
with different levels of exposure error.

The paper begins with a review of the relevant statis-
tical and epidemiological background, followed by a dis-
cussion of what constitutes exposure error for regression
analysis in the “time-series” study design of air pollution
epidemiology. Next, a bivariate analytical model is devel-
oped to quantitatively predict the expected bias in regres-
sion coefficients. After a brief discussion of how published
values are used as inputs for the model, a case study using
the Harvard Six-Cities data set is presented.

BACKGROUND
Exposure Terminology

Airborne particles are classified in three ways: mode, cut
point, and dosimetry.10 Classification by mode is based
on whether the particles are predominantly created by
the accumulation of smaller particles from combustion
sources or photochemical processes (i.e., “fine mode”) or
by mechanical grinding processes (i.e., “coarse mode”).
Classification by cut point is based on the 50% cut point
(e.g., 2.5 µm and 10 µm, of a standardized measuring de-
vice). Classification by dosimetry is based on how far par-
ticles penetrate into the human respiratory system.

IMPLICATIONS
Ambient air pollution regulations must be based on the
best available science, including a thorough treatment of
statistical issues in air pollution epidemiology. One such
issue, differences in measurement error between fine and
coarse particle exposures, may yield biased and mislead-
ing estimates of toxicity. The quantitative model devel-
oped in this paper estimates the expected bias of par-
ticle toxicities as a function of the true correlation of fine
and coarse particle exposures and the error with which
each is measured. Application of this model to ongoing
studies should help determine whether standards should
focus on PM10, PM2.5, or both.
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The terms “fine” and “coarse,” originally associated
with “mode,” are now also used to describe classifica-
tion by cut point. PM2.5 is often called the “fine” fraction
of PM10, while the PM10-2.5 fraction of PM10 is termed the
“coarse” fraction. This is an inexact classification, since
the size modes overlap between 1- and 3-µm diameter,
but it is now used in the exposure and health effects lit-
erature.10 For the purposes of this paper, we will use this
classification, denoting PM2.5 measurements as F and
PM10-2.5 as C, to represent the approximate fractions of
PM10 that are fine and coarse mode particles, respectively.

Statistical Terminology
The terms “measurement error” or “errors in variables”
refer to any differences between the true value of a vari-
able x and the observed or measured variable z. Depend-
ing on their relation to the outcome variable y, the errors
will be “differential” or “non-differential.” Differential
errors, or errors that are related to the outcome variable,
can be sources of sizable bias, and proper study design is
needed to avoid them.11 Formally, non-differential errors
imply Pr (y | x, z) = Pr (y | x) (i.e., the measurement con-
tains no information about the outcome above and be-
yond the information contained in the true value of x).12

Non-differential errors can also induce several problems,
including bias, but analytic techniques may be devel-
oped to address these problems.12-15 This paper will only
address non-differential errors.

The covariance of random variables A and B is de-
fined by Cov(A,B) = E [(A - µA)(B - µB)]. The correlation of
A and B is defined as Corr(A,B) = Cov(A,B) / ((Var A)(Var
B))0.5.16 By itself, correlation among predictor variables in
a regression hinders precise estimates of individual coeffi-
cients but will not hinder estimation of their joint effect.13

“Confounding” is defined as the bias introduced to the
observed coefficient of A by a variable B that is correlated
with A, is an independent predictor for the outcome vari-
able, and is either unaccounted for or imperfectly mea-
sured in the regression.11

In this paper, the regression contains predictor vari-
ables F and C, representing PM2.5 and PM10-2.5 as defined
above. It is assumed that the coefficients of F or C are
not confounded by other variables. As such, only the
joint effect of measurement error in F, measurement er-
ror in C, and the correlation of F and C on the observed
regression coefficients for F and C is addressed. Although
confounding by additional pollutants or weather may
be a serious additional concern,3 it is not included in
this analysis. For even in the absence of confounding by
other variables, the joint effect of measurement error and
correlation may preclude valid conclusions about F and
C in certain epidemiology studies.17

Statistical Background
Quantitative approaches to the effects of measurement er-
ror in regression analysis trace back three decades to
Cochran’s 1968 Technometrics paper,18 in which Cochran
wrote on the calculation of expected values of true variable
x, given observed variable z. This is known as the “classical
error” model, where the measurement model Pr(z|x) and
the true distribution Pr(x) are specified so that E[x|z] may
be calculated. An idealization of the classical error model is
measuring the length of a line with a ruler. The expecta-
tion of the observed value is the true value (i.e., E[z|x] = x),
and the standard deviation of the measurement from the
truth is determined by the quality of the ruler and skill of
the operator.

In the univariate classical error model, non-
differential exposure error results in attenuation of both
the exposure-response relationship and its statistical sig-
nificance.13,19 It may also obscure a true threshold relation-
ship.20 In a model with more than one predictor variable,
the problem is more complicated.21 Bias of the regression
coefficients may occur in either direction due to the inter-
play of correlation and measurement errors. Measurement
error can also create or hide effect modification.19

In some situations, it may be more appropriate to specify
Pr(x|z). Here, the classical error model does not apply. The
idealization for this situation is a machine that delivers doses
x based on a dial-setting z. If the machine has the additional
property E[x|z] = z, a “Berkson error” model applies. An ex-
ample of this occurs when all members of a group, each with
true exposure xi, are assigned the group mean exposure of z.
In the Berkson error model, the effects of measurement error
are the same as the classical model with one important ex-
ception: if the true dose-response is linear, the estimate of
the slope parameter is unbiased.19

The univariate case of measurement error has been well
studied for a model with a linear exposure-response rela-
tionship.19,20 Recent publications have reviewed the current
methods for understanding and correcting the effects of
measurement.12,19 Thomas et al. state that although quali-
tative conclusions are often made in this area, quantitative
treatments and conclusions are quite rare.12 Some recent
publications have shown applications to the air pollution
context.8,15,22

RELEVANCE TO AIR POLLUTION EPIDEMIOLOGY
In air pollution epidemiology, it is often infeasible to use
personal monitors to precisely determine average human
exposure to ambient pollutants. Instead, measurements
made at central site monitoring stations serve as proxies
(i.e., imperfect measurements of the true quantities). If prox-
ies for two or more correlated pollutants are included in a
multivariate regression, it may be difficult to separate their
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effects on the dependent variable if the pollutants are mea-
sured with differing amounts of error. In cases where the true
correlation of the pollutants or the difference in measurement
error is significant, variables with smaller measurement error
may absorb a non-trivial portion of the effect actually attrib-
utable to the other pollutant.17 In the extreme, when the proxy
for one variable is a better measure of the other variable than
its own proxy, a benign pollutant could be found harmful
while the truly harmful pollutant is found benign.23

Several other experts have recently raised this issue as
a major concern for inferences regarding the true impact of
air pollution. Moolgavkar and Leubeck4 concluded that the
contributions of each constituent of air pollution could not
be determined, in part due to statistical shortcomings such
as this. Dr. Anne Smith’s testimony before Congress focused
primarily upon the extreme case. She argued that air pol-
lutants with relatively smaller exposure error (i.e., fine par-
ticulate matter and gases) could be wrongly implicated for
the effects of air pollutants with relatively larger exposure
error (i.e., coarse particulate matter).23

The Health Effects Institute (HEI) initiated a re-analysis
of the Philadelphia time-series data in part to examine the
effects of multiple pollutants. In their Phase I.B report,
members of the HEI review team recognized that their re-
sults did not consider the possibility of measurement er-
rors that differed across pollutants. They stated further,
“Simple generalizations cannot be offered concerning the
consequences of measurement error and residual confound-
ing in complex data sets with multiple, correlated variables.”
The HEI oversight committee indicated in the same report
that Phase II of the project, currently in progress, would
attempt to develop models to address exposure errors and
their effects on daily time-series studies.24

Other experts are less convinced that this issue pre-
sents such a major hurdle to inference, given the large body
of air pollution epidemiology research.25,26 They argue that
studies have been conducted under a variety of study de-
signs, air pollution levels, air pollutant correlations, study
populations, and weather conditions with relatively robust
results for the effects of particulate matter. In particular,
the proxies used for ambient particulate matter correlate
far better with fine particles from ambient sources than
coarse particles from ambient sources, particles generated
indoors, or personal cloud particles.27,28 They maintain that
this strongly bolsters the case that ambient fine particles
are responsible for the effects seen in the studies.

EXPOSURE ERROR
Which Errors Matter?

Before one can assess the effects of exposure error in these
studies, one must determine what constitutes exposure er-
ror. For a study intended to estimate the increased risk of
health effects due to exposure to airborne pollutants, a

general definition of exposure error would be any differ-
ences between the proxy measurement used in the regres-
sion and an individual’s actual exposure. Several sources of
difference are possible, including instrumental/analytical
error, spatial variability, temporal variability, and variabil-
ity in human time-activity patterns. Lipfert7 provides a dis-
cussion of each of these sources of error. However, not all
of these sources of difference will necessarily introduce bias
into a linear dose-response relation, as some of them may
follow a Berkson error model. Schwartz29 has used the fol-
lowing equation for time-series studies:

xit = zt + (xt – zt) + (xit – xt) (1)

where xit is the ith person’s total exposure on day t, xt is the
mean personal total exposure on day t,30 and zt is the cen-
tral site monitor total exposure on day t.

The second term, (xt – zt ), the difference between the
mean personal and monitor exposure, can introduce bias
in the regression results. This relation reflects both instru-
mental/analytical error and spatial variability in exposure.
The third term, (xit - xt ), the difference between a specific
person’s exposure and the mean personal exposure, follows
a Berkson error structure and will not introduce bias in the
regression if the dose-response function is linear. This third
term reflects temporal variability in exposure, variability across
buildings in building penetration rates, and variability across
individuals in time-activity patterns. If one is concerned only
about the potential for bias of the regression coefficients, then
one should focus exclusively on the types of errors that can
introduce bias. For this paper, a linear dose-response is assumed,
thus enabling the Berkson simplification.

Which Exposure Does the Proxy Estimate?
Personal exposure to particles can be broken down by source
of generation: ambient (e.g., industrial and automotive
emissions and suspended soils), indoor (e.g., cooking and
passive smoke), and personal cloud (e.g., smoking and par-
ticles resuspended by personal activity). Although indoor
and personal cloud exposures are the dominant source of
personal exposure to particles, EPA only has the authority
to regulate ambient air pollution. If exposures to these other
sources of particles are confounding the observed associa-
tion between mortality and ambient pollution, EPA’s regu-
lations could be misguided. However, such confounding is
possible only if exposure to indoor-generated and personal
cloud particles is correlated with exposure to ambient-
generated particles in the context of the study design (e.g.,
time-series) concerned.

Results from the Particle Total Exposure Assessment
Methodology (PTEAM) study indicate that daily exposures
to indoor-generated and personal cloud-generated particles
are not correlated with ambient-generated particles.28,31 These
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results imply that ambient central site measurements should
only be thought of as proxies for average exposure to ambi-
ent-generated particles. Although future exposure studies are
needed to reinforce the PTEAM results, it is assumed for this
paper that this implication holds true.

In this section, it has been shown that information on
instrumental/analytical error and spatial variability may be
all that is required to assess the potential bias due to differ-
ential measurement error in regression coefficients from
time-series studies. In the next section, a simplified model
is introduced for determining the expected bias from the
interplay of measurement error and correlation. Without
loss of generality, the model is developed with correlated
unit normal variables.

REGRESSION SIMULATION MODEL
Description

The model simulates a time-series study design that consti-
tutes the vast majority of recent air pollution epidemiol-
ogy studies.4 In this design, the relation between pollution
variables and daily death counts is studied for a specified
geographical area. In the simulation model, pollutants F
and C represent the true average population exposure of
the fine and coarse fractions of PM10. Daily observations of
each pollutant are assumed to be unit normal variables,
and F and C are assumed to be positively correlated.

Twenty-four-hr averaged pollution measurements at
centrally located ambient monitors are used as proxies for
average population exposure to ambient particles. Measure-
ments of F and C are denoted as F’ and C’, respectively.
Without loss of generality, these are also unit normal vari-
ables. The measurement error between pollutant measure-
ments and true pollutant exposure is represented as a
positive correlation between 0 and 1. For instance, Corr(F,
F’) = 0.5 would indicate that one-fourth (i.e., (0.5)2) of the
variation in the measurement of F is determined by the
variation in F, and the remaining three-fourths is determined
by random error.

The model assumes that the total measurement errors
of F and C are uncorrelated on a day-to-day basis. This sim-
plification is justified by spatial variability’s dominance of
instrumental error in determination of the total error. Al-
though instrumental errors for F and C may well be corre-
lated,32 there is little evidence that day-to-day changes in
the spatial pattern of F and C across the city are correlated.

The dependent variable Y, the portion of daily mortal-
ity attributable to these two pollutants, is assumed to be a
linear function of fine and coarse particle  levels, as follows:

CFY CF ** ββ += (2)

where βF and βC are chosen a priori to reflect various pos-
sible true impacts of fine and coarse particles on mortality.

The regression performed in epidemiology is a function
of measurements of the pollution levels,

(3)

where Fβ̂  and Cβ̂  are estimators of βF and βC. The re-
sults of the regression are influenced by the measurement
error in F and C, as well as the underlying true correlation
of F and C.

With unit normal variables, the ordinary least-squares
estimate of the coefficients is given by

(4)

where X=  Y=  and 

Taking expectations for the regression coefficients, we
obtain

(5)

(6)
which reflect the dependence of the coefficients on the
fine and coarse particle measurement error, Corr(F,F’) and
Corr(C, C’), respectively, and the true correlation between
fine and coarse particles, Corr(F,C).

A convenient summary of the relative amount of ex-
pected bias in the estimates of the regression coefficients
is given by “bias ratio,” B,

(7)

where high values of B indicate overestimation of F’s co-
efficient relative to C’s coefficient.

Discussion of Results
For the sake of brevity, results are presented for three illus-
trative, but plausible, cases, (βF/βC) = {1, 3, 10}. These results
are summarized in a series of three figures: Figure 1 shows
results for equally toxic pollutants (i.e., (βF/βC) = 1); Figure 2
shows results for the case where one pollutant is somewhat
more harmful than the other (i.e., (βF/βC) = 3); and Figure 3
shows results for the case where one pollutant is substan-
tially more harmful than the other (i.e., (βF/βC) = 10).
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All of the graphs have the same structure. The degree
of fine particle measurement error, denoted as Corr(F,F’),
is given on the x-axis. The degree of coarse particle mea-
surement error, denoted as Corr(C,C’), is given on the y-
axis. The contours in the body of the graph show values
of the expected bias, B, in the ratio of the estimated fine/
coarse regression coefficients. Because the expected bias
is a function of the true correlation between fine and
coarse particle exposures, each figure includes three
graphs, each corresponding to a different correlation. Val-
ues of 0.25, 0.50, and 0.75 are shown to illustrate a range
of possible true correlations between fine and coarse
particle exposures.

For the case in which the pollutants are equally toxic
(see Figure 1), there is no bias in the ratio of the estimated
coefficients (i.e., B = 1) as long as the pollutants are mea-
sured with equal precision. However, if they are measured
with unequal precision, the ratio of the estimated coeffi-
cients will be biased and therefore potentially mislead-
ing. For example, if fine particles are better measured than
coarse, then it will appear that fine particles are more toxic
than coarse (i.e., B > 1), and conversely, if coarse particles
are better measured than fine, it will appear as if coarse
particles are more toxic than fine (i.e., B < 1). The degree
of bias depends on the degree of relative measurement
error between fine and coarse particle measurements and
on the true correlation between fine and coarse particle
exposures. As the true correlation between fine and coarse
particle exposures increases,
the impact of any imbalance
in the relative measurement er-
ror increases (i.e., the value of
B moves further away from 1).

When one pollutant
(e.g., fine particles) is more
toxic than the other (e.g.,
coarse particles), as shown in
Figures 2 and 3, exposures to
the more toxic pollutant
must be measured with less
error in order for the ratio of
estimated coefficients to be
unbiased. This need for differ-
ent measurement error in-
creases as the underlying
difference in true toxicity in-
creases (Figure 1a->2a->3a).
Within each figure, the po-
tential for bias increases as the
true correlation between fine
and coarse particle exposure
increases (Figure 3a->3b->3c),

and accordingly, the need for even more precise mea-
surement of fine particles grows.

In contrast to Figure 1, if the pollutants in Figures 2
and 3 are measured with equal precision, the ratio of the
estimated fine coefficient to the estimated coarse coeffi-
cient will be biased downward, resulting in a relative over-
estimation of the less toxic pollutant. Again, the degree
of bias increases with higher correlations between fine
and coarse particle exposure.

This rather counterintuitive result can be explained by
examining the terms in the equations for E[βF’] and E[βC’].
Since the results are symmetrical, only the result for E[βF’]
will be explained. The numerator consists of two contribu-
tions and two subtractions, while the denominator is a
normalizing constant. The first contribution is the “true”
contribution from the true value of βF’ diluted by measure-
ment error in F. The second contribution is the “false” con-
tribution from the true value of βC, where the full effect of
C is diluted once by the correlation of the true quantities
and then by the measurement error in F. The two subtrac-
tion terms are the corresponding contributions to E[βC’],
except for dilution by the ratio of the correlation of the
measurements to the variance of C’. When F is more po-
tent than C, and both F and C are measured with the same
error, the “false” contribution from C to F will not make up
for the corresponding subtraction from F to C. Thus, the
stronger pollutant must be measured more accurately than
the weaker pollutant to balance out the unequal transfers.

Figure 1. Bias contours for equally toxic pollutants (Bf/Bc = 1).
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The model also helps to show the implausibility of
the extreme case (i.e., F is falsely implicated while C is
falsely exonerated). Simplifying eqs 5 and 6 by substitut-
ing ßF = 0, it is apparent that in order for F, harmless in
this case, to be found merely as equally harmful as C,
Cov(F’,C) must equal Cov(C’,C). In other words, F’ must
measure C as well as C’ measures C. This requires Cov(C,F)
to be greater than Cov(C,C’) by a factor of 1/Cov(F’,F). In
order for F to be found much more harmful than C (the
extreme case), F’ would have to measure C much better
than C’ measures C.

CASE STUDY—HARVARD SIX-CITIES STUDY
While the theoretical results could be explored in more
detail, the true usefulness of this model comes with its
application to actual data sets. Below, the model devel-
oped above is applied to two cities from the “time-series”
portion of the Harvard Six-Cities Study (SCS).26 This study
was chosen for several reasons. First, it was the first large-
scale “time-series” study of the association of ambient
particle concentrations with increased daily mortality that
used both measurements of both ambient fine (PM2.5) mass
and coarse (PM10-2.5) mass. Second, it was integral to the
evidence cited by EPA in support of the introduction of a
PM2.5 standard.33 Third, the study was specifically men-
tioned in previous qualitative discussions of measurement
error and correlation.23

This case study analyzes Boston, MA, a city with an
observed fine:coarse coefficient ratio of 11 to 1, and Knox-
ville, TN, a city with an observed fine:coarse coefficient

ratio of 1.4 to 1. In the first
step, the parameters needed
for the model are derived
from the published SCS litera-
ture. In the second step, these
parameters are used in the
model to assess the possibil-
ity that the published coeffi-
cients are misleading due to
correlation and differences in
measurement error. In the third
step, a sensitivity analysis is
conducted using a range of
measurement correlations.

Estimation of
Parameters

Since exposure studies do not
directly report the parameters
used in our simulation model,
the information reported must
be translated into the correla-
tion parameters used by the

model. Information on the fine and coarse regression coef-
ficients, as well as the correlation between fine and coarse
measurements, were reported in the SCS “time-series” pub-
lication.26 Unfortunately, there was little attention devoted
to the spatial variability of fine and coarse particles in the
SCS.34 Consequently, information on spatial variability from
the Metropolitan Aerosol Acidity Characterization Study
(MAACS),27,35 a study of four large East Coast cities, is used
to estimate spatial variability. Since the MAACS and SCS
only overlap for one city (Boston), a range of spatial vari-
abilities for fine and coarse particles is analyzed for Knox-
ville in the sensitivity analysis.

Table 1 presents the estimates of the simulation in-
put parameters for Boston and Knoxville. The appendix
presents a detailed description of how these are estimated
from reported values of instrumental error, spatial vari-
ability, and measured central site concentrations.

Estimation of Expected Bias
The first six rows in Table 1 present the information avail-
able. The first three rows contain the estimated fine par-
ticle measurement, coarse particle measurement, and true
fine particle:coarse particle correlations. The observed
fine:coarse ratio is based on the observed coefficients in
the SCS.26 Since the model yields an expected observed
fine:coarse ratio, given a true fine:coarse ratio and the
three correlations, eqs 5–7 are used to calculate the true
fine coarse ratio in each city based on the information
available. The last row of Table 1 presents these calcu-
lated true fine:coarse ratios for Boston and Knoxville.

Figure 2. Bias contours for case of fine three-fold as toxic as coarse (Bf/Bc = 3).
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The calculated true fine:
coarse ratio for Boston is 26:1,
whereas the calculated true
fine:coarse ratio for Knoxville is
0.9:1. In the case of Boston, the
very high actual observed
fine:coarse ratio, combined with
the given measurement correla-
tions, leads to the conclusion that
the true ratio is even higher than
the observed ratio. For Boston,
this provides evidence against the
hypothesis that the coefficient of
the better measured pollutant is ab-
sorbing some of the coefficient of
the other pollutant. For Knoxville,
however, the calculated true
fine:coarse ratio is markedly less
than the actual observed
fine:coarse ratio. This indicates that
the better-measured pollutant, fine
particles, may be overestimated relative to coarse particles
due to the interplay of measurement error and correlation.

Sensitivity Analysis for Case Study
Since a proxy was used for spatial variability in Knoxville,
it is important to consider a broader range of values than
the central estimates used above. As shown in the appen-
dix, the MAACS data translated to a range of measurement
correlations between 0.85 and 0.95 for fine particles and
0.65 to 0.85 for coarse particles. The sensitivity analysis
explores two cases: (1) smallest plausible difference in mea-
surement error (i.e., Corr(F’,F) = Corr(C’,C) = 0.85) and (2)
largest plausible difference in measurement error (i.e.,
Corr(F’,F) = 0.95, Corr(C’,C) = 0.65). These cases yield cal-
culated true ratios of 1.65 and 0.48, respectively. Therefore,
it is likely that the observed ratio for Knoxville is an overes-
timate of the relative toxicity of fine versus coarse particles.
While the best estimate indicates that the toxicities were
relatively equal (0.9:1), it is possible that the coarse par-
ticles could be twice as toxic as the fine particles under the
boundaries of the model’s assumptions.

LIMITATIONS
While this approach appears promising in diagnosing bias
for a bivariate regression, there are a number of reasons to
use caution in application. Analysis of this type is limited by
the quality of the central estimates of coefficients. If there
are other significant causes of bias affecting the coefficients,
this analysis may hold little quantitative value. However, one
can still qualitatively predict the potential for bias from the
issue addressed in this paper simply from estimating the cor-
relations. If the fine-coarse true correlation is low, or if the

difference in the measurement correlations is small, there
is less chance for bias in the observed coefficients due to
the issue discussed herein.

In the case study, data from the MAACS study are used
to estimate the bias in the SCS data set. Ideally, one should
have data relevant to the time-period and city at hand.
Rough estimates from other cities may lead to spurious re-
sults. The sensitivity analysis showed the importance of find-
ing the correct estimate of measurement error for each
pollutant. This sensitivity increases as the true correlation
of the variables increases.

This case study assumes that exposures to other pol-
lutants (i.e., gaseous pollutants, indoor-generated particles,
etc.) are not correlated with exposures to ambient particles.
If there are other covariates, the analysis must be expanded

Table 1. Case study parameters and results.

City

Notation Boston Knoxville

Fine Particle Measurement Correlation Cor(F’, F) 0.85 0.90

Coarse Particle Measurement Correlation Cor(C’, C) 0.65 0.75

Estimated True Fine:Coarse Correlation Cor(F,C) 0.28 0.54

Observed Fine Coefficient (β
F
)
OBS

2.2 1.4

Observed Coarse Coefficient (β
C
)
OBS

0.2 1.0

Observed Fine:Coarse Coefficient Ratio (β
F
/β

C
)

OBS
11 1.4

Calculated True Fine Coefficient (β
F
) 2.6 1.23

Calculated True Coarse Coefficient (β
C
) 0.1 1.35

Calculated True Fine:Coarse Coefficient Ratio (β
F
/β

C
) 26 0.9

 Figure 3. Bias contours for case of fine ten-fold as toxic as coarse (Bf/Bc = 10).
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to a multivariate setting. Although the computational re-
quirements will rise substantially, the multivariate solution
will be of the same general form as the bivariate solution
shown in eqs 5 and 6.

The model assumed that the measurement errors for F
and C are uncorrelated. This was based on the assumption
that the spatial variability error is much larger than the
instrumental error and the assumption that the day-to-day
changes in the spatial pattern of F and C across the city are
uncorrelated. If either of these assumptions fails, then the
regression model should be adjusted to account for this
additional correlation in the terms.

Finally, errors of the Berkson type can induce bias if
the dose-response is non-linear. In the non-linear case, er-
rors concerning the difference between the average indi-
vidual and the ith individual cannot be ignored. This is a
relatively unexplored area of research, and future work
should specifically address errors in exposure assessment
under non-linear dose-response.

CONCLUSIONS
This paper introduced a tool for predicting the amount of
bias present in the ratio of fine and coarse particle regres-
sion coefficients due to the interaction of correlation and
measurement error. The model showed that the amount of
bias depended on several variables: the true correlation of
fine and coarse particle exposures, the measurement errors
for fine and coarse particle exposures, and the underlying
true ratio of the fine particle toxicity to coarse particle tox-
icity. Analysis of the model proved that all of these vari-
ables must be discussed and analyzed before making any
broad conclusions regarding bias. For instance, it is inad-
equate to state that differences in measurement error among
fine and coarse particles will lead to false negative findings
for coarse particles. If the underlying true ratio of the fine
and coarse particle toxicities is large (i.e., greater than 3:1),
fine particle exposure must be measured significantly more
precisely in order not to underestimate the ratio of fine par-
ticle toxicity versus coarse particle toxicity.

Given the assumptions discussed previously, the case
study applied the model to two cities from the SCS. The
case study showed it was unlikely that coarse particle
toxicity was underestimated relative to fine particle tox-
icity in Boston, where the observed F:C coefficient ratio
was 11:1. However, the case study also showed that it
was possible that coarse particle toxicity was underesti-
mated relative to fine particle toxicity in Knoxville. These
results were subject to several limitations, in particular
the lack of matching spatial variability data. Although the
MAACS data set may make a reasonable proxy, possible
conclusions across the sensitivity analysis for Knoxville
varied widely. This result underscores the need for spatial
variability data (i.e., several ambient monitors situated

across a metropolitan area for a period of many months).
Without these data, no definitive conclusions can be
made regarding the possibility of bias due to differences
in measurement error among correlated pollutants.

As ongoing studies in epidemiology and exposure as-
sessment create a larger database of time-series analyses with
concurrent measurements of the fine and coarse particle
exposures, the quantitative tool developed in this paper
will be useful in assessing the possibility of bias from the
interplay of measurement error and correlation. Further
work in quantitative methods should be able to better re-
solve the many other debates regarding the interpretation
of air pollution epidemiology.
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APPENDIX
Estimating True F-C Correlation

The first step in estimating parameters for the case study is
to estimate the true F-C daily correlation. The SCS measured
both fine and coarse particles and reported correlations be-
tween these daily averaged measurements. However, since
measurements of both types of particles involve some
amount of instrumental error, the true correlation between
true concentrations is actually somewhat higher. If we as-
sume that the size of instrumental error is not strongly de-
pendent on the overall mass of the measurement, we can
estimate the true correlation via the method outlined below.

The Relation of the Additive Error Model to Bivariate Normality.
First, since instrumental errors are often reported in an ad-
ditive fashion (i.e., “error was estimated at ± 2 µg/m3”), we
must transform these numbers into correlations for use in
our simulation model. The usual model for measurement
error is an additive model: Z = X + E. If X and E are indepen-
dent normal variables, then

(A-1)
and

.
(A-2)

`

Conversely, if the variance of Z and the correlation ρ are known,
one can calculate the variances of X and E using eq 7 and

var( ) var( ) *E X=






1
12ρ

–
(A-3)

(Note that if random variables X and Y have a bivariate nor-
mal distribution with correlation ρ, location and scale trans-
forms will not affect ρ. This allows us to construct our model
with unit normal variables without loss of generality.)

Calculation of True F-C Correlation. This example uses the
Philadelphia MAACS results. For coarse particles, instrumen-
tal error was ~ 2 µg/m3 and the standard deviation of the
samples was ~ 4.5 µg/m3.35 This would correspond to var(Z)
= 20, var(E) = 4, and var(X) = 16 by subtraction. By (eq A-2),
ρinst = 0.89, which is the correlation of daily 24-hr average
coarse measurements with the true 24-hr average concen-
tration. Similarly, with fine particles, we find ρinst = 0.92,
with instrumental error ~ 4 µg/m3 and the standard devia-
tion of the samples ~ 10 µg/m3.

With this estimate, we back-calculate an expected true
F-C correlation, undiluted by instrumental error. Under our
assumptions of bivariate normality, if the reported correla-
tion between two measured quantities is denoted as Corr(X’,
Y’), then the correlation between the true quantities is

  
corr X Y

corr X Y

corr X X corr Y Y
( , )

( ' , ' )

( , ' ) * ( , ' )
=

(A-4)
This implies that a measured correlation between fine
and coarse particles of 0.29 should be adjusted upward
to 0.29 / (0.92*0.89) = 0.35. This is likely a small adjust-
ment relative to the overall uncertainties involved, but
making no adjustment would incorrectly assume that no
instrumental error was present.

Estimating Correlations of Central Site and
Average Individual Exposure

The first step in the case study determined the true ex-
tent of correlation between the two co-pollutants. In the
next step, we determine the amount of error present due
to use of the central site monitor. Here, we find the cor-
relation between the central site data and the true aver-
age individual exposure to each pollutant. Equation 1
implies that reported spatial variability and instrumen-
tal error are the only two pieces of information neces-
sary to know this correlation. To illustrate this result, we
conducted a simulation via a microenvironmental model
of human exposure within a city.

The Microenvironmental Model. A commonly used model
for estimating personal exposure is the microenvironmen-
tal model.36 Average individual exposure to ambient
particles is primarily composed of indoor exposures (at
home and work/school) to ambient particles that have
penetrated indoors and remained suspended. Therefore,
a simple version of a microenvironmental model for an
individual would be

(A-5)

where Ak represents the ambient concentrations in the
vicinity of the kth microenvironment, tk is the time spent
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in the kth microenvironment, and fk is the penetration
fraction. All of these are variable quantities that can be
represented as probabilistic parameters in a simulation
study using S-PLUS.37 A similar study, focused on ozone,
has been conducted by Navidi and Lurmann.15

Data Inputs and Procedure for Simulation. In this simula-
tion, we created a hypothetical city divided into six sec-
tions, where each section had an ambient monitor. We
chose the number six to be consistent with the average
number of monitors in the MAACS study cities. We then
generated a 300-day series of concentrations for each sec-
tor, with concentrations in each sector correlated by an
average of ρ with the other sectors. Next, we randomly
assigned 1000 people to a home and office location and
computed their exposure using empirical distributions for
time-activity patterns and building penetration rates.38,39

Then, for each day, we found the average individual ex-
posure. This allowed us to compute the correlation of the
average individual exposure with each of the monitors,
any of which could be the “central-site” monitor.

Results of Simulation. This simulation was performed for
several different values of ρ, the assumed true spatial cor-
relation. After performing this simulation for 1000 runs,
it was apparent that the expected correlation was simply
the square root of ρ, the true spatial variability. This find-
ing agreed with eq 1, as predicted.

Estimated Correlations for SCS Analysis. Unfortunately, the
SCS had limited spatial variability data for fine particles
and none for coarse particles, so we had to use the spatial
variability reported in the MAACS study as a rough sub-
stitute. The average fine particle spatial variability in these

four cities ranged from 0.75 in Nashville and Boston to
0.85 in Washington and Philadelphia. The average coarse
particle spatial variability ranged from 0.40 in Boston to
0.67 in Philadelphia and Washington. Again, we must
adjust these estimates upward to account for expected
instrumental error. After adjusting for instrumental error
and taking the square root of the result, we estimated the
correlation between the central site and average individual
to be in the range of 0.85 to 0.95 for fine particles and
0.65 to 0.85 for coarse particles. Since Boston is in both
studies, we can use its MAACS result directly.
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