The online platform for Taylor & Francis Group content

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Advanced and citation search

Journal of the American Statistical Association

Volume 89, Issue 428, 1994

Translator disclaimer

Abstract

This article introduces a resampling procedure called the stationary bootstrap as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on weakly dependent stationary observations. Previously, a technique based on resampling blocks of consecutive observations was introduced to construct confidence intervals for a parameter of the m-dimensional joint distribution of m consecutive observations, where m is fixed. This procedure has been generalized by constructing a “blocks of blocks” resampling scheme that yields asymptotically valid procedures even for a multivariate parameter of the whole (i.e., infinite-dimensional) joint distribution of the stationary sequence of observations. These methods share the construction of resampling blocks of observations to form a pseudo-time series, so that the statistic of interest may be recalculated based on the resampled data set. But in the context of applying this method to stationary data, it is natural to require the resampled pseudo-time series to be stationary (conditional on the original data) as well. Although the aforementioned procedures lack this property, the stationary procedure developed here is indeed stationary and possesses other desirable properties. The stationary procedure is based on resampling blocks of random length, where the length of each block has a geometric distribution. In this article, fundamental consistency and weak convergence properties of the stationary resampling scheme are developed.

Key Words

Related articles

View all related articles
 

Details

  • Received: 0 Apr 1992
  • Published online: 27 Feb 2012

Author affiliations

  • a Department of Statistics , Purdue University , West Lafayette , IN , 47907
  • b Department of Statistics , Stanford University , Stanford , CA , 94305

Journal news

Article metrics

Librarians

Taylor & Francis Group